

INSTITUTO DE FÍSICA Facultad de física

Fondecyt Fondo Nacional de Desarrollo Científico y Tecnológico

Long-Lived Neutral Particles decaying to b's: Reinterpretation of LHC displaced vertex searches

Giovanna Cottin

Based on <u>Eur.Phys.J. C76 (2016)</u> with B.C. Allanach, M. Badziak, N. Desai, C. Hugonie, R. Ziegler and our LHC-LLP Community White paper (J. Beachman et al, <u>1903.04497</u>)

Long-Lived Particles and the Third Generation Workshop Higgs Centre for Theoretical Physics, University of Edinburgh November 2019

Next-to-minimal Supersymmetry with Gauge Mediation predicts neutral long-lived particles in decay chains ending in *b*-quarks

A 125 GeV higgs constraints SUSY model building. Light sparticle spectrum possible in non-minimal models. In this talk the focus is the DGS Model:

V

$$egin{aligned} & W_{ ext{NMSSM}} = \lambda S H_u H_d + rac{\kappa}{3} S^3 \ & W_{ ext{GM}} = X \sum_{i=1,2} \left(\kappa^D_i ar{\Phi}^D_i \Phi^D_i + \kappa^T_i ar{\Phi}^T_i \Phi^T_i
ight) \ & W_{ ext{DGS}} = S \left(\xi_D ar{\Phi}^D_1 \Phi^D_2 + \xi_T ar{\Phi}^T_1 \Phi^T_2
ight) \end{aligned}$$

NMSSM +Gauge Mediation+Direct Singlet Messenger Couplings = DGS Model

Delgado, Giudice, Slavich Phys. Lett. B 653 (2007) 424 In the DGS model, a new contributions to the Higgs mass appears

Allanach, Badziak, Hugonie, Ziegler Phys.Rev. D92 (2015) 1, 015006

$$m_h^2 = M_Z^2 \cos^2 2eta + \lambda^2 v^2 \sin^2 2eta + m_{h,{
m mix}}^2 + m_{h,{
m loop}}^2$$

singlet-Higgs mixing contribution giving substantial contributions to the tree-level Higgs mass

This leads to a very light singlet-like pseudo scalar(~20 GeV) and a ~100 GeV singlino NLSP

DGS Model Spectrum Generated with NMSSM Tools

Allanach, Badziak, Cottin, Desai, Hugonie, Ziegler Eur.Phys.J. C76 (2016)

> Light singlet-like pseudo scalar (~20 GeV) and a ~100 GeV singlino-like neutralino NLSP. Gluino of 1.9 TeV

 $ctau_N1 = 99 \text{ mm}$

NOTE: Further studies on the model rules out points with small enough gluino mass that has a long-lived neutralino

M. Badziak, N. Desai, C. Hugonie, R. Ziegler <u>Eur.Phys.J. C79 (2019) 67</u>

GGM:

Gauge Mediation

GMSB Displaced Phenomenology

$$c\tau \simeq 130 \left(\frac{100 \text{ GeV}}{m_{\tilde{\chi}_1^0}}\right)^5 \left(\frac{\sqrt{F}}{100 \text{ TeV}}\right)^4 \times 10^{-3} \text{ mm}$$

Decays to gravitino suppressed by SUSY-breaking scale

Displaced GGM: A. Delgado, G. F. Giudice, P. Slavic, <u>Phys. Lett. B653 (2007)</u>

NMSSM+ Gauge Mediation

NGMSB Displaced Phenomenology

The only free parameter is the messenger scale, which controls the phenomenology

Displaced Searches @ the LHC ATLAS Multitrack DV 8 TeV search PRD92 (2015) 7, 072004

Signatures inside inner tracker (lifetimes of order picosecond to a nanosecond)

Analysis strategy Look for high-mass and track multiplicity DVs (mDV>10 GeV, nTrk>5)

Event Display <u>arXiv:1109.2242</u>

ATLAS Multitrack DV 8 TeV search PRD92 (2015) 7, 072004

Standard tracking algorithms are re-run with looser cuts to gain efficiency for displaced (high-d0) tracks

Veto vertices in material layers (dominant background) with a 3D material. Zero background search

Standard objects (jets, electrons, muons, tracks) are not so standard anymore if they are/come from a LLP. Reconstruction efficiencies have a strong dependence on LLP decay position/boost, which are hard to model within custom/publicly available simulation tools

Risk of dangerous extrapolations. Validation is KEY!

Our Recast

We implement a custom made toy detector simulation* and (model independent) vertex reconstruction algorithm** inspired by the ATLAS multi-track DV analysis

DV jets	4 or 5 or 6 jets with $ \eta < 2.8$ and $p_T > 90, 65, 55$ GeV, each.	
DV reconstruction	DV made from tracks with $p_T > 1$ GeV, $ \eta < 2.5$ and $ d_0 > 2$ mm, satisfying a tracking efficiency given by equation 2. Vertices within 1 mm are merged.	
DV fiducial	DV within 4 mm $< r_{DV} < 300$ mm and $ z_{DV} < 300$ mm.	Ī
DV material	No DV in regions near beampipe or within pixel layers: Discard tracks with $r_{DV}/\text{mm} \in \{[25, 38], [45, 60], [85, 95], [120, 130]\}.$	track
$\overline{N_{ ext{trk}}}$	DV track multiplicity ≥ 5 .	y _{DV} φ
m_{DV}	DV mass > 10 GeV.	
		Ψ <i>xy</i> 1

* Made inside Pythia8. Particles decaying outside ID are considered stable. FastJet for jet reconstruction.

** DV algorithm takes displaced tracks as input. It compares and clusters the tracks origins until each track is assigned to a single vertex. After merging vertices, the DV position is defined as the average position of all track origins in the cluster.

Track Efficiency Parameterization

Eur.Phys.J. C76 (2016)

Validation against the ATLAS benchmarks

The previous functional form gives the best fit to three of the ATLAS benchmarks

 $\varepsilon_{\rm trk} = 0.5 \times (1 - \exp(-p_T/[4.0 \text{ GeV}]))$ $\times \exp(-z/[270 \text{ mm}])$ $\times \max(-0.0022 \times r_\perp/[1 \text{ mm}] + 0.8, 0)$

Model Sensitivity

Sensitivity is affected due to low pseudo scalar mass and the presence of b's.

Low a1 mass means softer b's, which produce fewer tracks, making hard to satisfy a large vertex invariant mass

Sensitivity is affected due to the presence of additional displaced b-vertices

b-hadrons are themselves long-lived, and both b's from the neutralino decay have less than 5 tracks* and are almost always more than 1 mm apart. Displaced-displaced vertices !

* 18.1 (tracks after hadronisation) x 0.06 (displaced track efficiency) = 1.2 visible tracks per displaced b

Tuning the DV cuts to enhance sensitivity

Loosen up invariant mass and track multiplicity cuts. Increase merging distance of DV reconstruction to 5mm to catch both b' in same vertex. Control backgrounds (such as random track crossings) by adding standard jet+MET prompt searches cuts (ATLAS <u>Eur. Phys. J. C (2016) 76: 39</u>)

\sqrt{s}	8 TeV		13 TeV	
Signal region	4jt-8	6jt-8	4jt-13	6jt-13
$p_T^{\text{miss}}/\text{GeV} >$	160	160	200	200
$p_T(j_1)/\text{GeV} >$	130	130	200	200
$p_T(j_2)/\text{GeV} >$	60	60	100	100
$p_T(j_3)/\text{GeV} >$	60	60	100	100
$p_T(j_4)/\text{GeV} >$	60	60	100	100
$p_T(j_5)/\text{GeV} >$	-	60	-	50
$p_T(j_6)/\text{GeV} >$	-	60		50
$\Delta \phi$ (jet _{1,2,3} , $\mathbf{p}_T^{\text{miss}}$) _{min} >	0.4			
$\Delta \phi$ (jet _{j>3} , $\mathbf{p}_T^{\text{miss}}$) _{min} >	0.2			
$p_T^{\text{miss}}/m_{\text{eff}}(N_j) >$	0.25		0.2	
$m_{\rm eff}({\rm incl.})/{\rm GeV} >$	2200	1500	2200	2000
$\sigma_{95}^{\rm obs}$ (fb)	0.15	0.32	2.7	1.6

Recommendations for DV searches @ 13 TeV

Can discover NMSSM+GM with 100/fb @13 TeV. This is better than a prompt strategy alone! Further bkg. optimizations motivates experimental studies !

DVL+4jt region gives eff ~ 0.2% at benchmark

Ideal to relax cuts further, but doing so requires a full estimation from DV background (heavy flavour, material interactions and random crossing of tracks) Estimation from heavy flavour decays gives zero events in 3.2 fb-1. G. Cottin 10.17863/CAM.12237

Relevant updates to the ATLAS DV search @ 13 TeV Phys. Rev. D 92, 072004 (2015)

Public ATLAS efficiency grids at 13 TeV to model detector response to DVs.

Can be applied to truth-level MC (nTrk, mDV, rDV) instead of track efficiency parametrization we did

NOTE: These maps assume all tracks from LLP decay are prompt. So would need much care if 3rd gen. comes from the DV (ex. we avoided this in : G. Cottin, J.C. Helo and M. Hirsch, <u>Phys. Rev. D97</u> (2018)

Improvements in the available experimental information makes the DV search validation much straightforward!

Limits Looking MUCH alike for Les Houches 2018 !

Cottin, N. Desai, J. Heisig and A. Lessa ([1803.10379] C17-06-05.2)

Lessons Learned from Recast: Different levels of Information

arXiv:1710.04901

LHC-LLP community whitepaper <u>arXiv:1903.04497</u>

Going Open : LLP GitHub with these Reinterpretations ! An LHC LLP Community Initiative

github.com	/llprecasting/recastingCodes/tr	ree/master/DisplacedVertices/ATLAS-SUSY-2014-02_GCottin										
Fondo Na	Free Macr	🛛 🔈 Prenota O 😂 SISTEMA 😂 Cittadin	ia									
	Branch: master 🕶		Create new file	Upload files	Find file	History						
	recastingCodes / Displace	edVertices / ATLAS-SUSY-2014-02_GCottin /										
	andlessa Added first recasting	g code		Latest commi	t 9							
						Branch: master - recastingCodes / Displ	acedVertices / ATLAS-	SUSY-2016-08_GCottin /	Create new file	Upload files	Find file	History
	Plots	Added first recasting code				andlessa Added first reca	sting code			Latest commit	9f3647d o	n May 28
	pythiaCode	Added first recasting code				-						
	DS Store	Added first recasting code				Plots		Added first recasting code			6 mo	nths ago
		Added first recenting code				pythiaCode		Added first recasting code			6 mo	nths ago
		Added hist recasting code				ATLASDV MET recas	pdf	Added first recasting code			6 mo	nths ago
	I README.md					README.md		Added first recasting code			6 mo	nths ago
						III README.md						

ATLAS Displaced Vertex plus jets 8 TeV Recast

Authors:

Giovanna Cottin

This repository holds the main code for recasting the 8 TeV ATLAS search for displaced vertices in association with (arXiv:1504.05162). See also ATLAS-SUSY-2014-02. It includes a simple displaced vertex reconstruction algorithm based on a functional form for tracking efficiency.

This code was validated in:

• https://arxiv.org/abs/1606.03099

ATLAS Displaced Vertex 13 TeV Recast

Authors:

Giovanna Cottin

This repository holds the main code for recasting the 13 TeV ATLAS search for displaced vertices plus missing transverse momenta (ATLAS-SUSY-2016-08) using the parametrized efficiencies for event and displaced vertex reconstruction provided here.

This code was used in:

Summary

We have applied LHC constrains on a NMGMSB model with light sparticles producing displaced decays to *b*-quarks in the final state

There is low sensitivity for current displaced LHC searches. Low pseudo scalar mass and b-quarks affects efficiency dramatically ! Can have signatures of 'displaced-displaced' vertices. A larger merging requirement (5mm) helps merge the two b's. A higher mass would produce more collimated daughters and b-hadron vertices are more likely to be close to each other. Relaxed DV+prompt cuts boosts the efficiency. This can get better with proper bkg. studies

Long-lived/displaced searches are very challenging for LHC experiments. More public information ideal for phenomenologists trying to recast (special care with 3rd gen on how to use the available information). Several recommendations for the presentation of LLP search results in our whitepaper <u>arXiv:1903.04497</u>!

Scope for improvement from our side as well (ex. LLP Recast GitHub going public to help the community).

Backup

How to get a natural 125 GeV Higgs in SUSY ?

	Naturally accomodate a 125 GeV Higgs via	with Gauge Mediation		
MSSM	large At	large At can not happen without new Higgs-messenger couplings		
NMSSM	new contributions to Higgs mass	soft terms are too small, unles direct Singlet-messengers couplings are introduced		

this talk, DGS Model !

Motivations for NMSSM

In the NMSSM, the supersymmetric Higgs mass parameter is promoted to a gauge-singlet superfield S

$$\mu \hat{H}_u \hat{H}_d \longrightarrow \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{k \hat{S}^3}{3}$$

The NMSSM solves the μ problem, which is the puzzle of why the SUSY mass scale is of the same order of the SUSY breaking scale if they have a conceptually different origin?

The problem is solved in the NMSSM since an effective term is generated

$$\mu_{eff} = \frac{\lambda v_s}{\sqrt{2}} \sim Q_{EW}$$

The vev is determined by minimizing a potential that depends on soft supersymmetry-breaking terms. So in this way, the value of the effective parameter is no longer conceptually distinct from the mechanism of supersymmetry breaking.

DV CutFlows

	$\sqrt{s} = 8 \text{ TeV}$		$\sqrt{s} = 13 \text{ TeV}$	
	N	ϵ [%]	Ν	ϵ [%]
All events	100000	100.	100000	100.
DV jets	96963	97.	98306	98.3
DV reconstruction	16542	17.1	16542	16.8
DV fiducial	16459	99.5	16460	99.5
DV material	16146	98.1	16210	98.5
N_{trk}	584	3.6	544	3.4
$m_{\rm DV}$	4	0.7	3	0.6

	$\sqrt{s} = 8 \text{ TeV}$		$\sqrt{s} = 13 \text{ TeV}$	
	N	ϵ [%]	N	ϵ [%]
All events	100000	100.	100000	100.
Prompt $p_T^{\text{miss}*}$	91709	91.7	87737	87.7
Prompt jets*	72075	78.6	84178	95.9
Prompt $\Delta \phi(\text{jet}_{1,2,3}, \mathbf{p}_T^{\text{miss}})_{min}^*$	49095	68.1	57261	68.
Prompt $\Delta \phi(\text{jet}_{i>3}, \mathbf{p}_T^{\text{miss}})_{min}^*$	27315	55.6	33832	59.1
Prompt $p_T^{\text{miss}}/m_{\text{eff}}(N_j)^*$	6670	24.4	18409	54.4
Prompt $m_{\rm eff}({\rm incl.})^*$	6636	99.5	16848	91.5
DV jets	6636	100.	16848	100.
DV reconstruction [†]	1524	23.	3850	22.9
DV fiducial	1516	99.5	3825	99.4
DV material	1494	98.5	3750	98.
$N_{\mathrm{trk}} \geq 2$	1494	100.	3750	100.
$m_{\rm DV} > 5 { m GeV}$	88	5.9	265	7.1

Structure of a Displaced Decay

$$egin{aligned} r_\perp &= \sqrt{x^2 + y^2} \ an \phi &= p_y/p_x \ d_0 &= r_\perp imes \sin{(\phi_{xy} - \phi)} \end{aligned}$$