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o Seeds for the current fluctuations had to have been
T present at feq
e @ — no causal generation mechanism possible.
e o Need to go beyond Standard Cosmology to understand
the data.
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R Cauchy surface.
Fluctuations . .
@ Horizon: region of causal contact.
o Hubble radius: /y(t) = H~'(t) inverse expansion rate.
Fundamental . .
Physics o Hubble radius: local concept, relevant for dynamics of
e cosmological fluctuations.
' o In Standard Big Bang Cosmology: Hubble radius =
horizon.

Conclusions

o In any theory which can provide a mechanism for the
origin of structure: Hubble radius # horizon.
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Note: ¢ and d¢p related by Einstein constraint equations
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Matter Bounce Cosmology

SUBLEE  Idea: Non-singular bouncing cosmology with a

grstelll  matter-dominated phase of contraction, can be realized in
the context of Horava-Lifshitz gravity [R.B.,

B 2rXiv:0904.2835].
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Physics wavelength modes is needed.
Partcle olna gontracting phase ¢ grows on super-Hubee scales.
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universe:
Conclusions
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o Thus the power spectrum becomes

Pek,n) ~ k32(77)_2|vk(77H(k))|2(%)2

k3k—1 (anlk)) )22(77)—2

o Thus, a scale-invariant spectrum of curvature
fluctuations results.

o The fluctuations can be followed through the bouncing
phase, modeled as a(n) = 1 + cn?.

o Use Hwang-Vishniac (Deruelle-Mukhanov) matching
conditions at the two surfaces (between contracting
matter and bounce phase, and between bounce phase
and expanding matter phase) to complete the evolution
of .

~ const
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Realizations <5p > - ﬁcv .
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Observations

ictuations P¢(k) _ 8G2k—1 < |5,0(k)|2 >
Realizations = 862k2 < ((SM)z >R
undamental _ 21 —4 2
Ehygwcs - _ BG k7_ < (15p) >R
Particle _ 2_
= 8G a7,

Key features:

Conclusions

o scale-invariant like for inflation
o slight red tilt like for inflation
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Trans-Planckian Window in Inflationary
Cosmology

the Hubble radius — causal generation mechanism is
possible.

o However: If time period of inflation is more than
70H~", then Ap(t) < Iy at the beginning of inflation

@ — new physics MUST enter into the calculation of the
fluctuations.

o Success of inflation: At early times scales are inside
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o If inflation can be successfully implemented into
fundamental physics, then the fluctuations may carry
the imprints of this fundamental physics to the present

Observations

Fluctuations

time.
e o Example: R. Easther et al (hep-th/0104102): Inflation in
STt the context of space-space noncommutativity —
e characteristic oscillations in P(k).
et o Example: E. Ferreira and R.B. (arXiv:1204.5239):
Conclusions Inflation in the context of Horava-Lifshitz gravity —

characteristic oscillations in P(k).
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Key features:

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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Observations

Fluctuations

o A detection of a blue spectrum of gravitational waves
would falsify the standard inflationary scenario of

Fundamental structure formation.
Physics

Partile o It would verify a prediction first made in the context of
e superstring theory.

Conclusions
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Fundamental
Physics

Physks @ Probing Particle Physics Beyond the Standard Model
o Cosmic Strings

@ Cosmic Strings and Cosmic Structure

o Signatures of Cosmic Strings in CMB Polarization and

21cm Surveys

ring:

Conclusions
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Cosmic Strings
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Observations Qo Cosm|C String = Iinear t0p0|09|Cal defeCt in a quantum
Fluctuations field thGOI’Y-

. o 1st analog: line defect in a crystal
Jdamensl @ 2nd analog: vortex line in superfluid or superconductor
hysics
Particle @ Cosmic string = line of trapped energy density in a
Pt 5
Comesiies quantum field theory.
s o Trapped energy density — gravitational effects on
conclusions space-time — important in cosmology.

4772



Relevance to Particle Physics and Cosmology

Early Universe

o Cosmic strings are predicted in many particle physics
R borger models beyond the “Standard Model".
@ In models which admit cosmic strings, cosmic strings
o inevitably form in the early universe and persist to the
present time.

Observations

Fundamental
Physics

Particle
Physics

Cosmic Strings

ignatt

Conclusions

48/72



Relevance to Particle Physics and Cosmology

Early Universe

o Cosmic strings are predicted in many particle physics
R borger models beyond the “Standard Model".
@ In models which admit cosmic strings, cosmic strings
o inevitably form in the early universe and persist to the
present time.
o Cosmic strings are characterized by their tension p
Fundamental which is associated with the energy scale » at which

Observations

Physics i
e the strings form (i ~ 7).
Physics o Searching for the signatures of cosmic strings is a tool

Cosmic Strings

to probe physics beyond the Standard Model at energy

ranges complementary to those probed by the LHC.
o Cosmic strings are constrained from cosmology:

strings with a tension which exceed the value

Gu ~ 1.5 x 10~/ are in conflict with the observed

acoustic oscillations in the CMB angular power

spectrum (Dvorkin, Hu and Wyman, 2011).

Conclusions
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Observations

Fluctuations

o Consider models with spontaneous symmetry breaking.
o Space of ground states M
Fundamental

Physics o M4(M) # 1 is the criterium for the existence of cosmic
Particle StringS.

Physics

o o Example: Broken U(1) symmetry — strings exist.

ignatt

Conclusions
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SERETGE on scales larger than t.

Hlueations @ Hence, there is a probability O(1) that there is a string
passing through a surface of side length t.
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Formation of Strings

Early Universe

R. Branden-

Leloch By causality, the values of ¢ in M cannot be correlated

Observations on scales larger than t.

e T o Hence, there is a probability O(1) that there is a string
passing through a surface of side length t.

Fundamental o Causality — network of cosmic strings persists at all

-

s o Correlation length &(t) < t for all times t > .

o Dynamics of £(t) is governed by a Boltzmann equation

Conclusions which describes the transfer of energy from long strings

to string loops
o Result: {(t) ~ tforall t>> {
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Scaling Solution
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Cosmic Strings

Figure 39. Sketch of the scaling solution for the cosmic string network. The box corresponds

to one Hubble volume at arbitrary time ¢.
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Geometry of a Straight String

Early Universe
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berger

Observations

Feneons Space away from the string is locally flat (cosmic string
exerts no gravitational pull).

Fundamental

Physics Space perpendicular to a string is conical with deficit angle

Particle
Physics
Sy a = 8rGu,
Structure

Conclusions
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Kaiser-Stebbins Effect

SURLEER  Photons passing by the string undergo a relative Doppler
R. Branden- Shlft

berger
Observations 5 T 8 G
— = 8my(v)w

Fluctuations T 'Y M ’
Fundamental
Physics

|
Structure

| photon paths

Conclusions

alpha |
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Observations

Fluctuations o — network of line discontinuities in CMB anisotropy

: maps.

F‘md;m”ema. o N.B. characteristic scale: comoving Hubble radius at
e the time of recombination — need good angular
Prysice resolution to detect these edges.

. o Need to analyze position space maps.

ignatt

Conclusions
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Signature in CMB temperature anisotropy maps

STIWEES 100 x 100 map of the sky at 1.5’ resolution
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Cosmic String Wake

SUBLEEY  Consider a cosmic string moving through the primordial gas:
R. Branden-

SIS Wedge-shaped region of overdensity 2 builds up behind the
Observations mOVing String: Wake

Fluctuations

Fundamental
Physics

Particle
Physics

ring:

E e , 8= 1Tk vyw)

ignatt 4 s
: 724 i
Conclusions . v 1/,
" . , P < ’ -
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Closer look at the wedge
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berger

o Consider a string at time t; [tec < ti < fp]
hsenations @ moving with velocity vs

Fluctuations

o with typical curvature radius c1f;

Fundamental o
Physics Cltl
Particle
Physics v

Cosmic String

Structure

ignatt 1
Conclusions 4WGMtiVSYS

LYY
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Gravitational accretion onto a wake

Early Universe
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berger

o Initial overdensity — gravitational accretion onto the
wake.

o Accretion computed using the Zeldovich approximation.
@ Focus on a mass shell a physical distance w(q, t)

Observations

Fluctuations
Theory

Fundamental

FiELEE above the wake:

Prysice o Turnaround shell: g,(t) for which w(gp(t),t) =0
o Result: gy(t) ~ a(t)

Conclusions o Yields thickness of the gravitationally bound region

(wake thickness).
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Signature in CMB Polarization

Early Universe

. o Wake is a region of enhanced free electrons.

berger

o CMB photons emitted at the time of recombination
Observations acquire extra polarization when they pass through a
Fi\rurt?tuauons Wake.
o Statistically an equal strength of E-mode and B-mode
Fundamenta polarization is generated.
hysics
il o Consider photons which at time ¢ pass through a string
e segment laid down at time #; < t.
Conclusions
P 241 , 3 \1/2
- ~ — (= fGuv;
o o5 (7-) TorfGuvsys

xQpe(to)my 't (2(1) + 1) % (2(t) + 1) /2.
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Signature in CMB Polarization |l

Early Universe

S Inserting numbers yields the result:

berger

)+ 1
Observations E ~ fG/.LVs’YSQB(Z(t) T 1 )2(2(1;1)0;_ )1/2107 ‘

3
Fluctuations Q 1 0

Theory

Criteria

Characteristic pattern in position space:
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Physics
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Structure
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Conclusions
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Is B-mode Polarization the Holy Grail of
Inflation?

Early Universe

R. Branden-
berger

o Cosmic strings produce direct B-mode polarization.

S @ — gravitational waves not the only source of primordial
o B-mode polarization.

o Cosmic string loop oscillations produce a
o damensl scale-invariant spectrum of primordial gravitational

Physics

waves with a contribution to § T/ T which is comparable
to that induced by scalar fluctuations (see e.g. A.
Albrecht, R.B. and N. Turok, 1986).

Particle
Physics
Cosmic String:

Gonclusions @ — a detection of gravitational waves through B-mode
polarization is more likely to be a sign of something
different than inflation.
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21cm Signals from Cosmic String Wakes

Early Universe

R. Branden-

R @ 21 cm surveys: new window to map the high redshift
Observations universe, in particular the “dark ages".

luctiaons o Cosmic strings produce nonlinear structures at high
redshifts.

Fundamental @ These nonlinear structures will leave imprints in 21 cm

:’y::: maps. (Khatri & Wandelt, arXiv:0801.4406, A.

Physics Berndsen, L. Pogosian & M. Wyman, arXiv:1003.2214)

o J @ 21 cm surveys provide 3-d maps — potentially more

Conclusions data than the CMB.

@ — 21 cm surveys is a promising window to search for
cosmic strings.
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The Effect

Early Universe

R. Branden-
berger

Observations

o 10% > z > 10: baryonic matter dominated by neutral H.

Fluctuations

o Neutral H has hydrogen hyperfine absorption/emission
line.

Fundamental

Physics o String wake is a gas cloud with special geometry which

Particle emits/absorbs 21cm radiation.

Physics

o Whether signal is emission/absorption depends on the
temperature of the gas cloud.

Conclusions
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Key general formulas

Early Universe

R. Branden- Brightness temperature:

berger

Observations Tb(V) _ TS(1 _ e—T,,) -+ T'y(V)e_TV :
Fluctuations
Spin temperature:
Fundamental 1 —|— X,
Physics TS = ] T c T T’y .
Particle + Xc "// K

Physics

Tk: gas temperature in the wake, x; collision coefficient

Signatures

Relative brightness temperature:

Tp(v) = T,(v)
142z

Conclusions

0Tp(v) =
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berger Optical depth:

Observations

3c2A v (N
— 210 ( ) f{lqb(l/).
4y keTs’ 4

Fluctuations Ty

S Ny ~ Gu column number density of hydrogen atoms.
Physics Line prOﬁIe:

Particle
Physics

) = 1 o~

Signatures

Conclusions — pixel 21cm intensity independent of Gpu.
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berger Optical depth:

Observations

3c2A w (N
= 210 ( )ﬂ(b(y) )
4y kB Ts 4

S Ny ~ Gu column number density of hydrogen atoms.
Physics Line prOﬁIe:

Particle
Physics

1
o) = 5, ~ (widh) ™" ~ (Gp)”!

Fluctuations T

Signatures

Conclusions — pixel 21cm intensity independent of Gp.

Frequency dispersion (thickness in redshift direction) ~ Gu.
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Application to Cosmic String Wakes

Early Uni
B Wake temperature Tk:
R. Branden-

berger

Observations TK = [20 K] ( G/‘L)g ( VS’YS)

ictuations

22,' + 1
z+1’
determined by considering thermalization at the shock
which occurs after turnaround when w = 1/2wp,x (see
TEEmE Eulerian hydro simulations by A. Sornborger et al, 1997).

Physics

Particle

Physice Thickness in redshift space:

ring:

SS::E;ww 5 24 N
Conl _l/ — 1—57TG[LV5’73(Z,'+1)1/2(Z(0+1) 1/2

3 x 10_5(GH)6(V575) ;

2

using zj + 1 = 10% and z + 1 = 30 in the second line.
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berger Relative brightness temperature:

Observations

Fluctuations XC T,y 1/2
= . — 1

i 0Tp(v) [0 07K]1+xc(1 TK)( + 2)

Fundamental ~ zoomK fOf z + 1 - 30 °

Physics

Recs Signal is emission if Tx > T, and absorption otherwise.

Physics
Co: ring:

Signatures

Conclusions
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Signatures

Conclusions

Relative brightness temperature:

_ Xc _ﬂ 1/2
5To(r) = [007 Kz (1= $)(1+2)

~ 200mK for z+1=30.

Signal is emission if Tx > T, and absorption otherwise.

Critical curve (transition from emission to absorption):

(z+1)?

2 —2
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Scalings of various temperatures
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Theor
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L L
Conclusions 100 60 50 30 20 10

Top curve: (Gu)s = 1, bottom curve: (Gu)s = 0.3
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Geometry of the signal
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Conclusions

Early Universe

R. Branden- o Lots of cosmological data.
berger .. .
o Origin of structure: very early universe.

@ Physics of the very early universe can be tested by
Fluctuatior B g
e means of cosmological observations.

Observations

o Several theoretical paradigms of early universe
LA cosmology exist, inflation not the unique scenario.
Particle @ In this context, fundamental physics can be tested with

Physics

cosmological observations.

: o Particle physics beyond the Standard Model can be

conclusions tested by means of searching for the signatures of
topological defects.

o CMB polarization and 21cm windows are particularly
promising.
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