Imperial College London

Planck Probes the Standard Model(s)

Andrew Jaffe Imperial College

New Directions in Theoretical Physics Edinburgh January 2014

This talk based on data and ~30 papers released March 2013 by the 400-person Planck Collaboration

The Planck Mission

Why the CMB?

- Why Planck?
- The Planck Mission:
 - Hardware & Analysis
- Highlights from Planck:
 - ~30 papers and many GB of data released March 2013
 - Cosmology, astrophysics, the structure of space & time
 - A simple, standard model? Or anomalies and inconsistencies?
 - data and papers available at ESA's *Planck* Legacy Archive Archive (and NASA's LAMBDA)

Planck launch, 14 May 2009, ESA Spaceport, French Guyana

Light from the Universe

Light from the Universe

A standard cosmological model?

$$ds^{2} = c^{2}dt^{2} - a^{2}(t) \begin{bmatrix} \frac{dr^{2}}{1 - kr_{-}^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta \ d\phi^{2} \end{bmatrix}$$

Predictions:
("pillars of the Big Bang")
Expansion (Hubble)

$$Recombination (CMB)$$

The Hot Big Bang:

- Expansion, cooling from a hot, dense early state
- radiation \Rightarrow matter (baryogenesis)
- quarks \Rightarrow protons & neutrons
- protons & neutrons \Rightarrow nuclei (Big Bang Nucleosynthesis — BBN)
- nuclei & electrons \Rightarrow atoms (Cosmic Microwave Background CMB)
- Parameters:
 - density of radiation Ω_r , baryons Ω_b , dark matter Ω_c , dark energy Ω_{Λ}
 - Age t₀, expansion rate H₀
 - Curvature: Ω_k (=0?)

Also fluctuations—departures from uniformity—needed to form structure

Evidence & Observations: Cosmic Microwave Background

Opaque

Transparent

- 400,000 years after the Big Bang, the temperature of the Universe was T~3,000 K
- Hot enough to keep hydrogen atoms ionized until this time
 - □ proton + electron \rightarrow Hydrogen + photon $[p^+ + e^- \rightarrow H + \gamma]$
 - charged plasma \rightarrow neutral gas
 - depends on entropy of the Universe
- Photons (light) can't travel far in the presence of charged particles
 - **Opaque** \rightarrow transparent

Hotter

Initial temperature (density) of the photons

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

• All linked by initial conditions \Rightarrow 10⁻⁵ fluctuations

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

• All linked by initial conditions \Rightarrow 10⁻⁵ fluctuations

Initial temperature (density) of the photons

 $\sim \sim \sim$

Hotter

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

• All linked by initial conditions \Rightarrow 10⁻⁵ fluctuations

- Photon path from LSS to today
- All linked by initial conditions \Rightarrow 10⁻⁵ fluctuations

CMB Statistics

z~1300: p+e \rightarrow H & Universe becomes transparent.

$$\frac{T(\hat{x}) - \bar{T}}{\bar{T}} \equiv \frac{\Delta T}{T}(\hat{x}) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\hat{x})$$

i.e., Fourier Transform, but on a sphere

Determined by **temperature**, **velocity** and **metric** on the last scattering surface.

Power Spectrum:

$$\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

Multipole ℓ ~ angular scale $180^{\circ}/\ell$

For a **Gaussian** theory, C_{ℓ} completely determines the statistics of the temperature.

Physics of the CMB power spectrum

Gravity + plasma physics modulates initial spectrum of fluctuations (from, e.g., inflation)

Theoretical Predictions

January, 2003

WMAP (2003-2012)

PI Inter

Planck: Launched 2009

Nominal mission: I4 Months (extended ~2x, plus a "warm extension" for LFI)

Planck launch, 14 May 2009

Planck in orbit (animation)

PI Inter

Planck: Launched 2009

Nominal mission: I4 Months (extended ~2x, plus a "warm extension" for LFI)

Planck launch, 14 May 2009

Planck in orbit (animation)

Frequency Maps

Raw data: ~500 trillion samples over 15 months
 Maps: ~50 million pixels over 9 frequencies

Map consistency

Component Separation

- Emission at any frequency is the sum of the CMB and astrophysical sources along the line of sight.
- Planck observes in 9 bands over 30–850 GHz to disentangle cosmology from astrophysics

Component Separation

- Emission at any frequency is the sum of the CMB and astrophysical sources along the line of sight.
- Planck observes in 9 bands over 30–850 GHz to disentangle cosmology from astrophysics

Planck (2013)

Planck (2013)

From ~50 million pixels to ~2500 multipoles

Power spectrum consistency

Spectra

Fig. 25. Measured angular power spectra of *Planck*, WMAP9, ACT, and SPT. The model plotted is *Planck*'s best-fit model including *Planck* temperature, WMAP polarization, ACT, and SPT (the model is labelled [Planck+WP+HighL] in Planck Collaboration XVI (2013)). Error bars include cosmic variance. The horizontal axis is $\ell^{0.8}$.

Cosmological Parameters

Planck + WP

from 2500 points to ~6 parameters

• $\Sigma m_v < 0.23 \text{ eV} (95\%), N_{v,eff} = 3.30 \pm 0.27 (68\%)$ [with caveats]

Self-consistency of the parameters

- Very weak dependence on which subset of *Planck* data is analysed.
- Robust to
 - changes in l_{max}
 e.g., l~1800 cooler line
 - inclusion of channels
 - 217 GHz is a minor outlier, but inclusion affects parameters by a small fraction of a sigma

Non-Gaussianity

Fundamental (?) Physics: Inflation

- Early period of exponential expansion
 - makes the Universe geometrically flat
 - Prediction: flat Universe $(\Omega_k = I)$
 - takes a "causally connected" region and makes it larger than the observable Universe
 - Prediction: nearly uniform temperature
 - produces fluctuations (quantum randomness on astrophysical scales!)
 - slope of initial power spectrum \Rightarrow shape of C_ℓ
 - Prediction: n_s a little less than I
 - also: nearly Gaussian fluctuations
 - Prediction: gravitational radiation background

Inflation: Curvature from the CMB

75

70

65

- With primary CMB alone, cannot determine both $\Omega_{\Lambda} \& \Omega_{m}$ (i.e., curvature)
- Planck measures curvature through lensing
 - more matter, less dark energy ⇒ more lensing
 - distorts shape of power spectrum, smears out the small-scale peaks
 - boosts deflection power spectrun
 - about double at $\Omega_{\Lambda}=0$
 - Even more well determined when not a combined with other astrophysical data

 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

 $\Omega_{\rm m}$

Inflation: Primordial fluctuations

Inflation: Models

- Simplest models: scalar field φ w/very flat potential $V(\varphi)$
- Planck constrains specific models of inflation
- More information from the polarization of the CMB, which may observe the presence of gravitational waves in the early Universe:

Fundamental Physics: The shape of the Universe

- General relativity determines the curvature of the Universe, but not its topology (holes and handles)
- Most theories of quantum gravity (and quantum cosmology) predict topological change on small scales and at early times.
- Does this have cosmological implications?
 - E.G., small universe \Rightarrow fewer large-scale modes available \Rightarrow low power on large scales?

Topology from Planck

- "Matched circles" in a simulated Universe:
- When topological scale ≤ Horizon scale, induce anisotropic correlations (and suppress power) on large scales

- More powerful (Bayesian) methods take advantage of full correlation structure
- Alas, not found... but we limit the size of the "fundamental cube" to be greater than the size of the surface we observe with the CMB:
 - side L≥26 Gpc (85 billion light years!)

Consistency of Planck data

- within Planck ΔT/T: see above for self-consistency of maps, spectra, parameters
- between Planck methods
 - Iensing: direct measurement of lensing amplitude ~ 1.2 vs 1.0
 - clusters: lower $\Omega_{\rm m}, \sigma_8$
 - at face value, can be [only partially] ameliorated with neutrinos
 - but strong dependence on cluster modelling (e.g., hydrostatic bias)
- Parameter details: e.g., CMB measurements of H_0 a few σ low vs cosmic distance ladder
 - astrophysical measurements seem to be coming down a posteriori?

1000

Planck 2014-

theory

 Next up: twice as much intensity data (30 vs% 15 months) and polarization.
 Previou: at small/intermediate scales, polarization and intensity correlation exactly as predicted by theory.

Post-Planck

- Polarization: Starting to get the first results from kilo-pixel CMB detector arrays — sufficient to detect lensing conversion of E→B
 - Cross-correlation with large-scale structure (SPTPol: Hanson et al; ACT: Hand etal; Polarbear)

〈EEEB〉 & 〈EBEB〉
 (Polarbear)

 Still no detection of primordial B modes (gravitational radiation)

Conclusions

Planck data support a standard ACDM cosmology

- flat FRW
- perturbations:
 - nearly scale-invariant adiabatic
 - Gaussian + linear & nonlinear evolution
- A-like acceleration

- Some anomalies/inconsistencies remain (as might be expected)
- More data in 2014-15 from Planck and other experiments
 - especially polarization