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Sommerfeld-Bloch theory of
metals, insulators, and superconductors:

many-electron quantum states are adiabatically
connected to independent electron states
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Sommerfeld-Bloch theory of
metals, insulators, and superconductors:

many-electron quantum states are adiabatically
connected to independent electron states

Band insulators

> k

An even number of electrons per unit cell
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Sommerfeld-Bloch theory of
metals, insulators, and superconductors:

many-electron quantum states are adiabatically
connected to independent electron states

Metals
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Sommerfeld-Bloch theory of
metals, insulators, and superconductors:

many-electron quantum states are adiabatically
connected to independent electron states

Superconductors
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Boltzmann-Landau theory
of dynamics of metals:

Long-lived quasiparticles (and quasiholes) have weak
interactions which can be described by a Boltzmann equation

Metals
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Modern phases of quantum matter

Not adiabatically connected
to independent electron states:

many-particle
quantum entanglement,
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Modern phases of quantum matter

Not adiabatically connected
to independent electron states:

many-particle
quantum entanglement,

Famous examples:

The fractional quantum Hall effect of electrons in two
dimensions (e.g. in graphene) in the presence of a
strong magnetic field. The ground state is described
by Laughlin’s wavefunction, and the excitations are
quasiparticles which carry fractional charge.
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Modern phases of quantum matter

Not adiabatically connected
to independent electron states:

many-particle
quantum entanglement,

Famous examples:

Electrons in one dimensional wires form the
Luttinger liquid. The quanta of density oscillations
(“phonons™) are a quasiparticle basis of the low-
energy Hilbert space. Similar comments apply to
magnetic insulators in one dimension.
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Modern phases of quantum matter

Not adiabatically connected
to independent electron states:

many-particle
quantum entanglement,

Friday, January 10, 14



Modern phases of quantum matter

Not adiabatically connected
to independent electron states:

many-particle
quantum entanglement,
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Modern phases of quantum matter

Not adiabatically connected
to independent electron states:

many-particle
quantum entanglement,

and no quasiparticles
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|. The simplest models without quasiparticles
A. Superfluid-insulator transition
of ultracold bosons in an optical lattice
B. Conformal field theories in
2+ | dimensions and
the AdS/CFT correspondence
2. Metals without quasiparticles
“Nematic” order in the high

temperature superconductors
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|. The simplest models without quasiparticles

A. Superfluid-insulator transition

.

~\

of ultracold bosons in an optical lattice

B. Conformal field theories in
2+ | dimensions and
the AdS/CFT correspondence

2. Metals without quasiparticles

“Nematic” order in the high

temperature superconductors

Friday, January 10, 14



Superfluid-insulator transition

a Superflud state

Ultracold ®“Rb

atoms - bosons

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Nature 415, 39 (2002).
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Insulator

Superfluid
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U — a complex field representing the
Bose-Einstein condensate ot the superfluid

() #0
Superfluid

(W) =0
Insulator




= /d2frdt 0,0 — ¢*|V, 07 — V()]
— A= AU +u (U
(W) # 0 () = 0
Superfluid Insulator
0




S = /d2frdt 10, ¥]° — *|V, 0)? — V()]

V() = (A=) +u(|?)

vV

Particles and holes correspond
to the 2 normal modes in the

oscillation of ¥ about ¥ = (.

4

Re(y) Im()

(W) £ 0 () =0

Superfluid Insulator
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Insulator (the vacuum)
at large repulsion between bosons
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Excitations of the insulator:

Particles ~ W'
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Excitations of the insulator:

Holes ~ W
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S = /d2frdt 10, ¥]° — *|V, 0)? — V()]

V() = (A=) +u(|?)

vV

Particles and holes correspond
to the 2 normal modes in the

oscillation of ¥ about ¥ = (.

4

Re(y) Im()

(W) £ 0 () =0

Superfluid Insulator
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/dzrdt 10, ¥]° — *|V, 0)? — V()]

(A= AW 4w (|9]?)

(¥) #0

(P) =0
Insulator

Superfluid




Observation of Higgs quasi-normal mode 20!
across the superfluid-insulator transition of
ultracold atoms in a 2-dimensional optical

15r
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Manuel Endres, Takeshi Fukuhara, David Pekker, Marc Cheneau, Peter Schaub, Christian Gross,
Eugene Demler, Stefan Kuhr; and Immanuel Bloch, Nature 487,454 (2012).
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S = /derdt 10, ¥]° — *|V, 0)? — V()]

V() = (A=) +u(|?)

A conformal field theory

in 241 spacetime dimensions:
a CFT3

(¥) # 0 (V) =0

Superfluid Insulator
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— /d27’dt [\8,5\If|2 — |V, U7 — V(¥)]

= (A=) +u (9P’

Quantum state with

complex, many-body,

“long-range” quantum entanglement

(¥) # 0 (V) =0

Superfluid Insulator
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S = /derdt 10, ¥]° — *|V, 0)? — V()]

V(T) = (A= AW +u (o)’
No well-defined normal modes,
or quasiparticle excitations
(W) # 0 (W) =0
Superfluid Insulator
0
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M. Quantum y
\ critical ,
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Quantum 7
critical

“Boltzmann”
theory of Nambu-
Goldstone and
vortices

Boltzmann

theory of
particles/holes
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CFT3 at 7>0

Quantum
\ critical ,
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CFT3 at 7>0

Boltzmann theory of
particles/holes/vortices
does not apply

Insulator
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CFT3 at 7>0

Needed:

Accurate theory of
quantum critical
dynamics without
quasiparticles

Insulator
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Electrical transport in a free quasiparticle
CFT3for T >0

w/T
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Quasiparticle view of quantum criticality:
Electrical transport for a (weakly) interacting CFT 3

h
o(w,T) = ; Z ( kaT) ;2. — a universal function

Universal conductivity ~ e*/h
Re[o(w)] Universal time scale ~ h/kpgT

| hw

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I
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Quasiparticle view of quantum criticality:
Electrical transport for a (weakly) interacting CFT 3

h
o(w,T) = ; Z ( kaT) ;2. — a universal function

Universal conductivity ~ e*/h

Re[o(w)] Universal time scale ~ h/kpgT
O((u*)?),
where u™ 1s the
— fixed point —
Interaction

1 hw
kgT

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
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Quasiparticle view of quantum criticality:
Electrical transport for a (weakly) interacting CFT3

h
o(w,T) = ; Z ( kaT) ;2. — a universal function

Universal conductivity ~ e*/h

Relo(w)] O(1/(u")?) Universal time scale ~ h/kpT
O((u*)?),
where u™ 1s the
— fixed point —
Interaction

1 hw

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I
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Quasiparticle view of quantum criticality:
Electrical transport for a (weakly) interacting CFT 3

h
o(w,T) = ; Z ( kaT) ;2. — a universal function

N >k 2
Re[o(w)] O(1/(u*)*)
O((u*)?),
where u™ 1s the
fixed point —
Interaction

1 hw

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I
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Quasiparticle view of quantum criticality:
Electrical transport for a (weakly) interacting CFT3

h
o(w,T) = ; Z ( kaT) ;2. — a universal function

SO/ (w)?)

Relo(w)]

Needed:

— a method for computing
the conductivity

of strongly interacting CFT3s

1 hw

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997). k B I
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arXiv.org > cond-mat > arXiv:1309.2941

Condensed Matter > Strongly Correlated Electrons

The dynamics of quantum criticality via Quantum Monte Carlo and holography

William Witczak-Krempa, Erik Sorensen, Subir Sachdev
(Submitted on 11 Sep 2013 (v1), last revised 29 Nov 2013 (this version, v2))

Understanding the real time dynamics of quantum systems without quasiparticles constitutes an important yet challenging problem. We
study the superfluid-insulator quantum-critical point of bosons on a two-dimensional lattice, a system whose excitations cannot be
described in a quasiparticle basis. We present detailed quantum Monte Carlo results for two separate lattice realizations: their low-
frequency conductivities are found to have the same universal dependence on imaginary frequency and temperature. We then use the
structure of the real time dynamics of conformal field theories described by the holographic gauge/gravity duality to make progress on
the difficult problem of analytically continuing the Monte Carlo data to real time. Our method yields quantitative and experimentally
testable results on the frequency-dependent conductivity near the quantum critical point, and on the spectrum of quasinormal modes in
the vicinity of the superfluid-insulator quantum phase transition. Extensions to other observables and universality classes are discussed.

Search or

arXiv.org > cond-mat > arXiv:1309.5635

Condensed Matter > Strongly Correlated Electrons

Universal Conductivity in a Two-dimensional Superfluid-to-Insulator
Quantum Critical System

Kun Chen, Longxiang Liu, Youjin Deng, Lode Pollet, Nikolay Prokof'ev
(Submitted on 22 Sep 2013)

We compute the universal conductivity of the (2+1)-dimensional XY universality class, which is realized for a superfluid-to-Mott
insulator quantum phase transition at constant density. Based on large-scale Monte Carlo simulations of the classical (2+1)-dimensional
J-current model and the two-dimensional Bose-Hubbard model, we can precisely determine the conductivity on the quantum critical
plateau, o{oo) = 0.359(4)oy with o the conductivity quantum. The universal conductivity is the schoolbook example of where the
AdS/CFT correspondence from string theory can be tested and made to use. The shape of our o(iw,) — o(c0) function in the Matsubara
representation is accurate enough for a conclusive comparison and establishes the particle-like nature of charge transport. We find that
the holographic gauge/gravity duality theory for transport properties can be made compatible with the data if temperature of the
horizon of the black brane is different from the temperature of the conformal field theory. The requirements for measuring the universal
conductivity in a cold gas experiment are also determined by our calculation.
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Quantum Monte

Carlo for lattice bosons

FIG. 2.

extrapolated data.

0.4f
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Quantum Monte Carlo data (a) Finite-temperature conductivity for a range of U in the
L — oo limit for the quantum rotor model at (¢/U).. The solid blue squares indicate the final T' — 0
(b) Finite-temperature conductivity in the L — oo limit for a range of L, for the
Villain model at the QCP. The solid red circles indicate the final 7" — 0 extrapolated data. The inset
illustrates the extrapolation to T' = 0 for w,, /(27nT) = 7. The error bars are statistical for both a) and b).

W. Witczak-Krempa, E. Sorensen, and S. Sachdev, arXiv:1309.2941

See also K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokof’ev, arXiv:1309.5635
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Quantum Monte Carlo for lattice bosons
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W. Witczak-Krempa, E. Sorensen, and S. Sachdev, arXiv:1309.2941
See also K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokof’ev, arXiv:1309.5635
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|. The simplest models without quasiparticles
A. Superfluid-insulator transition
of ultracold bosons in an optical lattice
B. Conformal field theories in
2+ | dimensions and
the AdS/CFT correspondence
2. Metals without quasiparticles
“Nematic” order in the high

temperature superconductors
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|. The simplest models without quasiparticles
A. Superfluid-insulator transition

of ultracold bosons in an optical lattice

~\

B, Conformal field theories in
2+ | dimensions and
the AdS/CFT correspondence

.

2. Metals without quasiparticles

“Nematic” order in the high

temperature superconductors
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AdS/CFET correspondence

AdSy

RZ 1
Minkowski

—

| A

This emergent spacetime is a solution of Einstein gravity
with a negative cosmological constant
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Gauge-gravity duality at non-zero temperatures

There is a
family of
solutions of

Einstein
gravity which
describe
non-zero
temperatures
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Gauge-gravity duality at non-zero temperatures

A 2+1
dimensional
system at
>0
with
couplings at
1ts quantum

critical point
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Gauge-gravity duality at non-zero temperatures

A 2+1
dimensional

system at
7'>0

with
couplings at
1ts quantum
critical point

A “horizon”, similar to the
surface of a black hole !
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Gauge-gravity duality at non-zero temperatures

A 2+1
dimensional
system at
>0
with
couplings at
1ts quantum

critical point

The temperature and
entropy of the
horizon equal those
of the quantum
critical point
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Gauge-gravity duality at non-zero temperatures

A 2+1
dimensional

system at
7'>0

with
couplings at
1ts quantum
critical point

The temperature and | sasssssssssssssssssssssansssnnssnnssannsnns
entropy of the :  Quasi-normal modes of

horizon equal those quantum criticality = waves

of the quantum - falling into black hole -
critical point L ;
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Gauge-gravity duality at non-zero temperatures

A 2+1
dimensional

system at
>0
with
couplings at
1ts quantum

critical point

The temperature and Characteristic damping time
entropy of the

horizon equal those of quasi-normal modes:
of the quantum (kp/h)x Hawking temperature
critical point
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Traditional CMT

@ Identify quasiparticles and
their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures
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Traditional CMT Holography and black-branes

@ Start with strongly
interacting CFT without
particle- or wave-like
excitations

@ Identify quasiparticles and
their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures
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Traditional CMT

@ Identify quasiparticles and
their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures

Holography and black-branes

@ Start with strongly
interacting CFT without
particle- or wave-like
excitations

@ Compute OPE co-efficients
of operators of the CFT
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Traditional CMT

@ Identify quasiparticles and
their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures

Holography and black-branes

@ Start with strongly
interacting CFT without
particle- or wave-like
excitations

@ Compute OPE co-efficients
of operators of the CFT

@ Relate OPE co-efficients to
couplings of an effective
graviational theory on AdS
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Traditional CMT

@ Identify quasiparticles and
their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures

Holography and black-branes

@ Start with strongly
interacting CFT without
particle- or wave-like
excitations

@ Compute OPE co-efficients
of operators of the CFT

@ Relate OPE co-efficients to
couplings of an effective
graviational theory on AdS

@ Solve Einsten-Maxwell
equations. Dynamics of quasi-
normal modes of black
branes.
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AdS4 theory of quantum criticality

Most general effective holographic theory for lin-
ear charge transport with 4 spatial derivatives:

This action is characterized by 3 dimensionless parameters, which
can be linked to data of the CF'T (OPE coefficients): 2-point cor-
relators of the conserved current J, and the stress energy tensor
T,., and a 3-point 1', J, J correlator. Constraints from both the
CF'T and the gravitational theory bound |v| < 1/12 = 0.0833..

R. C. Myers, S. Sachdev, and A. Singh, Phys. Rev. D 83, 066017 (2011)
D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Phys. Rev. B 87, 085138 (2013)
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AdS4 theory of quantum criticality
0.50

0.45
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w/2nT

Good agreement between high precision Monte Carlo for imaginary frequencies,
and holographic theory after rescaling effective T' and taking oo = 1/g%,.

W. Witczak-Krempa, E. Sorensen, and S. Sachdev, arXiv:1309.2941
See also K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokof’ev, arXiv:1309.5635
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AdS4 theory of quantum criticality
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Predictions of holographic theory,
after analytic continuation to real frequencies

W. Witczak-Krempa, E. Sorensen, and S. Sachdev, arXiv:1309.2941
See also K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokof’ev, arXiv:1309.5635
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|. The simplest models without quasiparticles
A. Superfluid-insulator transition
of ultracold bosons in an optical lattice
B. Conformal field theories in
2+ | dimensions and
the AdS/CFT correspondence
2. Metals without quasiparticles
“Nematic” order in the high

temperature superconductors
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|. The simplest models without quasiparticles
A. Superfluid-insulator transition
of ultracold bosons in an optical lattice
B. Conformal field theories in
2+ | dimensions and
the AdS/CFT correspondence

2. Metals without quasiparticles
“Nematic” order in the high

temperature superconductors

\ J
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Iron pnictides:

a new class of high temperature superconductors
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" Resistivity |
\N L0 =+ AT

BaFe,(As,_ P)),

200

(K)

T

100

06 - 012 0.4 0.6

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido,
H. Ikeda, H.Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Physical Review B 81, 184519 (2010)
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" Resistivity |
\N L0 =+ AT

Fe,(As,_P)),
200

(K)

Neel (AF) and
“nematic’ order

T

100

02 0.4 0.6

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido,
H. Ikeda, H.Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Physical Review B 81, 184519 (2010)

Friday, January 10, 14



" Resistivity |
\N L0 =+ AT

Fe,(As,_P)),
200

(K)

Neel (AF) and
“nematic’ order

T

100

02 0.4 0.6

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido,
H. Ikeda, H.Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Physical Review B 81, 184519 (2010)
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" Resistivity |

\N /00 —|— ATa
BaFe,(As,_ P)),
200
<
~100

I =, =
% 0.
Superconductor
s.Kasahara, . Shivd BOse condensate of pairs of electrons

H. lke
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" Resistivity |
\N L0 =+ AT

BaFe,(As,_ P)),

200

(K)

T

100

: | .
T 0.2 0.4 ,
X Ordinary metal

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. C

H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Ma; ( Fe rm I I Iq u Id )

Physical Review B 81, 184519 (2010)
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" Resistivity |
\N L0 =+ AT

Strange BaFe,(As, P)),
200 Metal

no quasiparticles,
Landau-Boltzmann theory

(K)

does not apply

T

100

06 - 012 0.4 0.6

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido,
H. Ikeda, H.Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Physical Review B 81, 184519 (2010)
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S. Kasahara, H.J. Shi, K. Hashimoto, S. Tonegawa, Y. Mizukami,
T. Shibauchi, K. Sugimoto, T. Fukuda, T. Terashima, A.H. Nevidomskyy, and
Y. Matsuda, Nature 486, 382 (2012).

200
Paramagnetic
T (tetragonal) (010)r &=
® X y [—>(1 00), Fe As/P
o T>T" I<T”
A'd X T*
< 100F | -
I~ Electronic .,
® nematic
X
Antlferromagnetlc
ik “_D
O |

O Torque

BaFes(As1_.P.)o
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Quantum criticality of Ising-nematic ordering in a metal
p Y

Occupied states

Cl
&

J \ Empty states

A metal with a Fermi surface
with full square lattice symmetry
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Quantum criticality of Ising-nematic ordering in a metal

p Y

o
(N

Spontaneous elongation along y direction:

> X
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Quantum criticality of Ising-nematic ordering in a metal

p Y

LD
N

> X

Spontaneous elongation along x direction:
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Ising-nematic order parameter

O ~ /d2k (cos ky — cos k) CLJCka

Measures spontaneous breaking of square lattice
point-group symmetry of underlying Hamiltonian
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Quantum criticality of Ising-nematic ordering in a metal

p Y

LD
N

> X

Spontaneous elongation along x direction:
Ising order parameter ¢ > 0.
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Quantum criticality of Ising-nematic ordering in a metal

p Y

ah
(N

Spontaneous elongation along y direction:
Ising order parameter ¢ < O.

> X
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Quantum criticality of Ising-nematic ordering in a metal

A

P

N

- an
= T
or kj

(6) # 0 (@) =0

Fe

Pomeranchuk instability as a function of coupling r




Quantum criticality of Ising-nematic ordering
\ /
1 . ,
. Quantum ’
. critical ,

/

Phase diagram as a function of 1" and r
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Quantum criticality of Ising-nematic ordering in a metal

/
/

1

Quantum ¢
critical ,

Classical
d=2 Ising
criticality

Phase diagram as a function of 1" and r
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Quantum criticality of Ising-nematic ordering in a metal
T * 4
\
. Quantum ¢
. critical ,

criticality ?

Phase diagram as a function of 1" and r
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Quantum criticality of Ising-nematic ordering in a metal
T * 4
\
. Quantum ’
. critical ,

/

Phase diagram as a function of 1" and r
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Quantum criticality of Ising-nematic ordering in a metal

/.l' \ /
N /

. Quantum ¢
. critical ,

Strongly-coupled
“non-Fermi liquid” r
metal with no
quasiparticles

Phase diagram as a function of 7" and r
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Quantum criticality of Ising-nematic ordering in a metal

Strongly-coupled
“non-Fermi liquid”
metal with no
quasiparticles

Phase diagram as a function of 7" and r
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Quantum criticality of Ising-nematic ordering in a metal

/.l' \ /
N Y4

v Strange .
'« Metal

Strongly-coupled
“non-Fermi liquid” r
metal with no
quasiparticles

Phase diagram as a function of 7" and r
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Quantum criticality of Ising-nematic ordering in a metal

Theory of transport without quasiparticles
(inspired by holography):

e Formulate a continuum theory with a conserved momentum.

S. Hartnoll, R. Mahajan, M. Punk, and S. Sachdey, to appear
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e Formulate a continuum theory with a conserved momentum.

e Determine the relaxation rate of momentum due to small
perturbations that violate the conservation of momentum,
such as s-wave (Vj) and d-wave (hg) impurity scattering.

e We can then relate the momentum relaxation rate to the
resistivity via hydrodynamic/memory matrix methods.

e All steps above can also be implemented in holographic mod-
els, and consistent results are obtained :.e. solution of grav-
itational equations provides results consistent with hydrody-
namics, and with the breakdown of hydrodynamics due to
perturbations that violate momentum conservation.
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regime of quantum dynamics without quasiparticles.
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@ Strongly-coupled quantum criticality leads to a novel
regime of quantum dynamics without quasiparticles.

@ The simplest examples are conformal field theories
in 2+1 dimensions, realized by ultracold atoms in
optical lattices.

@ Holographic theories provide an excellent
quantitative description of quantum Monte studies of
quantum-critical boson models

@ Exciting recent progress on the description of
transport in metallic states without quasiparticles, via
field theory and holography
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