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Outline 
-  - elementary approach to quantum tunneling 
-    using  complex classical paths 

-  - vast range of applications, from foundational 
-    questions to quantum chemistry, the Hawking  

  evaporation of  black holes and even the 
-    validity of the ‘inflationary multiverse’ 



•  Classically, tunneling through a barrier  
     is not just hard, it’s  impossible 

•  Postselection + the semiclassical expansion 

•  Predictions for real-time weak measurements 

•  Extension to quantum field theory and gravity 

•  Implications for inflationary ‘multiverse’  

•  Applications from quantum chemistry to black holes 
  



Feynman path integral 

This incorporates ‘pre- and post-selection’ 
Limit               ,  perform via saddle point method  
                                  classical solution(s) dominate 
 
Can introduce weak measuring device to ‘see’ where  
the particle was between the initial and final times 
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Example: particle in a potential 
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Euclidean “bounce”                           Callan/Coleman 70’s  
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Deficiencies of the Euclidean approach: 
 
Dependence on initial state is very implicit 
 
Cannot ask real-time questions e.g. where  
was the particle at each moment of time?  
How did it get through the barrier? 
 
Hard to extend to time-dependent situations 



General classical solution described by 
two complex numbers: 
 
Energy      and time delay 
 
For real      , solutions are periodic 
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Can we do better? 
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Small imaginary  
part of energy will  
“carry us across” 
these  solutions 

e.g. 



General classical solution expressible in 
terms of a Jacobi elliptic function 
 
 
 
 
(we shall be interested in small complex 
values of the energy) 
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Double periodicity in complex t-plane 
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Expansion in nome q = e!!K '/K ;  q = m
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For small complex energy, i.e. small m 



Initial state: gaussian wavepacket 
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For false vacuum “ground state,” 
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Boundary conditions 
for classical solution 
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Dominant classical solution 

cf Bender, Brody, Hook  hep-th 0804.4169 
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Action is a contour integral in t: 
       connection with Euclidean bounce 
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Imaginary part of solution becomes very large,  
just prior to tunneling 
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Cubic potential 
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General classical solution (Weierstrass) 
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Even larger            just before tunneling 
due to double poles in complex t-plane 

  Im(x)



Couple to measuring device (pointer): 
 
 
 
where 
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Pointer momentum           commutes with 
Hamiltonian         work in momentum basis 
 
Interaction has this effect: 
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If         for pointer is Gaussian of width         , then 
for small g, effect on pointer is 
 
 
 
 
 
For                        this shift in          is a small  
fraction of the  quantum uncertainty in     , i.e.,     . 
 
Nevertheless, it can be measured with arbitrary accuracy  
if the experiment and the weak measurement are repeated 
a sufficiently large number of times 
 
                                                           (Aharonov et al.) 
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For a measurement performed a  
quarter-period before the particle  
tunnels, 
 
 
 
Experimental tests may be possible 
in quantum dots  
            (w/ J. Taylor, UMD/NIST) 
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Extensions and generalisations:  
      *  vary initial Gaussian: , ,c cL x p
     *  vary shape of initial wavepacket 
      *  include time-dependent forcing 
 
      *  higher dimensions 
      *  quantum field theory 
      *  electroweak vacuum stability 
      *  black hole evaporation 



Quantum Field Theory 



     * harder: infinite number of degrees of freedom 
 
      * initial ‘false vacuum’ wavefunctional 
 
      * IMPORTANT: this state defines a preferred frame,  
         because it is not the true, Lorentz-invariant ground state 
 
      * A Lorentz-invariant solution (of the Callan-Coleman  
         type) is necessarily time-reversal invariant and  
         hence not the semiclassical solution we seek 
 
      * Nonetheless, its spatial profile provides a good ansatz for  
         the emerging bubble in the large tunneling time limit. 



Bubble Nucleation: Euclidean Approach 

Real time 

Imaginary 
time   O(4) invariant

  O(3,1) invariant

Euclidean instanton 



Bubble nucleation in flat spacetime 
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Real-time ansatz 
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Ansatz may be systematically improved 
     using linear theory response  



The Inflationary ‘Multiverse’ 



Linde, Linde, Mezhlumian, PRD 50, 2456 (1994) 



“Anything that can happen will happen  
 - and it will happen an infinite number of times” 

Linde, Linde, Mezhlumian, PRD 50, 2456 (1994) 

Guth 



Note: the treatment of quantum effects is very 
heuristic in this, and other discussions of the 
‘multiverse’ (e.g. Susskind et al.) 
 
Bubble nucleation in de Sitter spacetime provides 
an ideal setting to explore these questions 
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If, instead, the initial hypersurface is chosen ‘at the 
throat’ and we try to describe a bubble which 
nucleates much later, then damping of field 
oscillations due to the exponential expansion of the 
universe has a big effect. It seems to me likely that  
no solution of the desired form exists. 
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The above discussion suggests that many-bubble 
‘inflationary multiverse’ is inconsistent with the 
semiclassical approximation because there is no 
classical solution describing the nucleation of a 
bubble long after the initial hypersurface. 
 
This is consistent with the Gibbons-Hawking 
calculation of the entropy of de Sitter spacetime – 
there are a finite number of states, so you just 
cannot have infinitely many independent bubbles 
 
Interesting implications for today’s metastable  
Higgs vacuum… and for black holes 



Thank you! 


