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Uncorrelated limits:

Suppose you have TWO parameters in a physics problem:
(1) perturbation parametere (¢ < 1)

(2) coupling constant a

For fixed a, perturbative solution S(g,a) is
conventional uncorrelated perturbation series:

- |
S(e,a) ~ > a,(a)e"



Correlated limits:

A nontrivial correlated limit arises if o I1s not fixed, but
tends to a critical value as € tends to O:

In a correlated limit:
(1) All terms in perturbation series become comparable as £ — 0

(2) Series S undergoes a transmutation -- it depends on one
parameter y, which is a combination of € and a.: S = S(y)

(3) S(y) still diverges but can be Borel summed

(4) When summed, S(y) is a universal function (describes
essentials of problem but is insensitive to specific details)

(5) Often, S(y) is entire (analytic for all y)



Three examples of correlated limits...




Example 1: Nonuniformly convergent
Fourier sine series at edge of interval
of convergence as a correlated limit

9
flx) = E a,, sin(nx)
1

(0<x<mn)
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Partial sum of first N terms
for the function f(x) = 1: A\ N=20
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This correlated limit is described by the
Gibbs function G(y) = Si(2y)

G(y) is entire and universal:
Valid for all functions f(x) that
donotvanishatx =0and/orx=mx




Example 2: One-turning-point problem:

Transition in QM wave function from classically allowed
to classically forbidden region as a correlated limit

n¢"(z) = Q(z)é(z) Q(z) ~ az



WKB series for wave function away from turning point:

| 1 [ . .
dwip(z) = exp = / ds» h'S,(s)| (h—0)

0 n=I()

Correlated limit:

Solution to one-turning-point problem is Airy function:
Solution is entire and universal [valid for all potentials Q(x)
that vanish linearly at the turning point]



Example 3: Laplace’s method for
asymptotic expansion of integrals

o0
Laplace integral Z(N)—/ dre°'") for large N:
()

Assume that S'(r) > 0
Repeated integration by parts gives complete asymptotic

expansion:
i EI" g
—NS(0) —k
e "o N ——
Z [ S'(r)dr ] S'(r)

r—=I\)

(This 1s an uncorrelated expansion for large N)



Suppose S'(0) is small,
but higher derivatives of S(r) are notsmallatr=0

As S'(0) = 0, kth term in series approximated by
N [=28"(0))* ' [S"(0))' T (k — 1/2)/T(1/2)

because this has greatest number of
powers of S°(()) in denominator



Correlated limit:
N — oo, §'(0) — 0, v* = N[S'(0)]?/S"(0) is fixed
Assume that S”(0) > 0 so that v > 0

VNS0 &= r/2)

e~ V50 & o D(k+1/2
Z(’T) » Z(_Q)L —2k—1 ( / )



Series diverges, but Borel sum is a
parabolic cylinder function:

Z(y) 1s entire. It is universal -- depends only on two
numbers, S(0) and S$”(0) . Z(y) applies universally to all
functions S(r) with these two particular values.

[Uncorrelated series depends on all derivatives of S(r) at r =0.]



For the special value v = 0, D_{(0) = /7 /2 gives the famous
result known as Laplace’s method

Z(N) ~ e MO /7 /2NS"(0)] (N — )

Laplace’s method is a limiting case of the correlated limit for
which SI{:U] =0andS"(())> 0. Correlated limit describes
approach ot Z(y) to Lapiace’s formula.



SUMMARY OF THE THREE EXAMPLES:

Laplace’s method is a correlated limit that describes in a
universal fashion what happens as derivative of S(r)
approaches 0 at the Laplace point, just as Gibbs function

describes in a universal fashion how a nonuniformly
convergent Fourier series for f(x) behaves as x approaches
the boundary of the interval, and just as the Airy

function describes the universal transition at a turning point.




BIG problem with correlated
limit in QFT...



Uncorrelated large-N expansion
for an O(N) QFT in 0 dimensions

N+1 N+1 2
541 (E9)|

1

Partition function: zz/ chp{

Rotational symmetry:

A=g/N

Z = Ay / dr e VL) L(r) = ?“9/‘2- + g-r'l/4 — logr
0

Note: g must be positive so that this integral
representation for Z converges!!



Laplace’s method: Locate the Laplace points — zeros of
L'(s)=r+gr*—1/r
One Laplace point lies in the range of integration 0 < r < oc:

ro = \/(G —1)/(29)

G=+14+4g
Ar e~ NL(ro) =5
~ A‘\'—HE: T {ILJ\T_L (_N — :x,)
VNG =
ap =
5—6G%—-G°
a1 =
2GS
385 — 924G? — 10G? + 684G* 4+ 12G° — 143G*
1o =
’ 1152G6

This is the uncorelated large-N asymptotic expansion of
the partition function Z



Correlated limit of the large-N expansion

For all terms in the expansion to have the same order of

magnitude, the correlated limit must be
N —

and

(that is, G — 0)

with

G measures departure from critical coupling

A e~V Lro) (1 5 385

- /NG/n

Disaster! Correlated limit is invalid.
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Requires that g < 0. Series is a nonalternating
divergent series and thus not Borel summable.



PT-symmetric quantum mechanics
to the rescue...

Meep! Meep!




PT-symmetric guantum mechanics:

Hamiltonian is non-Hermitian, but if it is PT symmetric
— that is, invariant under combined space and time reflection —
the eigenvalues can still be entirely real and positive!

This Hamiltonian has
PT symmetry!

Example: [ — p2 -+ @'553
Moreover, the Hamiltonian is self-adjoint with respect to a new

adjoint; namely CPT. The Hilbert space metric is positive
definite and time evolution is unitary.



A class of PT-symmetric Hamiltonians:

y

Note: € = 2 gives an
upside-down potential
with positive discrete
eigenvalues!

3 CMB and S. Boettcher
£ Physical Review Letters 80, 5243 (1998)



2 X 2 non-Hermitian PT-
symmetric Hamiltonian

il
H=(lrIri i ) (r, s, # real)

s ype it

T 1s complex conjugation and P = [[f [l,]

V n . 2 - E 2 = '2
Ey = reosf + 52 — r2gin?@ real it 5% > resin®

1 (:'Einr_t 1 )
( = — .
COS (¥ 1 —1 8111 €¥

where sina = (r/s)siné.



PT-symmetric guantum mechanics IS
fun. You can re-visit what you already
know about conventional Hermitian
guantum mechanics. And, you can fix
problems arising in Hermitian QM!

|

: A-t ..71.




Three examples: 2%

1. “Ghost Busting: PT-Symmetric Interpretation of the Lee Model,”
CMB, S. Brandt, J.-H. Chen, and Q. Wang
Phys. Rev. D 71, 025014 (2005) [arXiv: hep-th/0411064]

2. “No-ghost Theorem for the Fourth-Order Derivative Pais-Uhlenbeck
Oscillator Model,” CMB and P. Mannheim
Phys. Rev. Lett. 100, 110402 (2008) [arXiv: hep-th/0706.0207]

3. “PT-Symmetric Interpretation of Double-Scaling”
CMB, M. Moshe, and S. Sarkar
J. Phys. A: Math. Theor. 46, 102002 (2013) [arXiv: hep-th/1206.4943]

and

“Double-Scaling Limit of the O(N)-Symmetric Anharmonic Oscillator”
CMB and S. Sarkar

J. Phys. A: Math. Theor. 46, 442001 (2013) [arXiv: hep-th/1307.4348]



Example 1: Lee Model

V- N+ 0, N+ 60—V,

H = H[]' T gﬂle
Hﬂ — ’:-'HVDVTV ?HNNTN mgtl]kﬂr}
H, = VINa+a'N'V.

T. D. Lee, Phys. Rev. 95, 1329 (1954)

G. Killén and W. Pauli, Dan. Mat. Fys. Medd. 30, No. 7 (1955)
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Problem with the Lee Model:




AMERICAN MATHEMATICAL SOCIETY

- Citations
M ath SCI N et Mathematical Reviews on the Web From References: 0
Up From Reviews: 13

MRO0076639 (17,927d) 81.0X

Kiillén, G.: Pauli, W.

On the mathematical structure of T. D. Lee’s model of a renormalizable field theory.
Danske Vid. Selsk. Mat.-Fys. Medd. 30 (1955), no. 7, 23 pp.

Lee [Phys. Rev. (2) 95 (1954). 1329-1334; MR0064658 (16.317b)] has recently suggested perhaps
the first non-trivial model of a field-theory which can be explicitly solved. Three particles (V, N
and ) are coupled, the explicit solution being secured by allowing reactions V' = N + @ but
forbidding N = V' + 6. The theory needs conventional mass and charge renormalizations which
likewise can be explicitly calculated. The renormalized coupling constant g is connected to the
unrenormalized constant go by the relation ¢° /'ggg =1— Ag®. where A is a divergent integral.
This can be made finite by a introducing a cut-off.

The importance of Lee’s result lies in the fact that Schwinger (unpublished) had already proved
on very general principles, that the ratio ¢° /'902 should lie between zero and one. [For published
proofs of Schwinger’s result, see Umezawa and Kamefuchi., Progr. Theoret. Phys. 6 (1951), 543—
558: MRO0046306 (13,713d); Kédllen. Helv. Phys. Acta 25 (1952), 417-434; MR0O051156 (14.4351);
Lehmann, Nuovo Cimento (9) 11 (1954), 342-357; MR0072756 (17.332¢); Gell-Mann and Low,
Phys. Rev. (2) 95 (1954), 1300-1312; MR0064652 (16.315¢e)]. The results of Lee and Schwinger
can be reconciled only if (1) there is a cut-off in Lee’s theory and (i) if g lies below a critical
value gc;it- The present paper is devoted to investigation of physical consequences if these two
conditions are not satisfied.

The authors discover the remarkable result that if ¢ > g.i; there is exactly one new eigenstate
for the physical V' -particle having an energy that is below the mass of the normal 1 -particle.
It is further shown that the S-matrix for Lee’s theory is not unitary when g > g.i and that the
probability for an incoming V -particle in the normal state and a #-meson, to make a transition
to an outgoing V -particle in the new (“ghost™) state, must be negative if the sum of all transition
probabilities for the in-coming state shall add up to one. The possible implication of Kallén and
Pauli’s results for quantum-electrodynamics, where in perturbation theory (e/eq)? has a behaviour
similar to (g /'gg)g in Lee’s theory. need not be stressed.

Reviewed by A. Salam

(©) Copyright American Mathematical Society 1956, 2007



“A non-Hermitian Hamiltonian is unacceptable
partly because it may lead to complex energy
eigenvalues, but chiefly because it implies a non-
unitary S matrix, which fails to conserve probability
and makes a hash of the physical interpretation.”

G. Barton, Introduction to Advanced Field Theory (John Wiley & Sons, New York, 1963)



GHOSTBUSTING: Reviving

guantum theories that were
thought to be dead

“Ghost Busting: PT-Symmetric Interpretation of the Lee Model”
CMB, S. Brandt, J.-H. Chen, and Q. Wang, Phys. Rev. D 71, 025014 (2005) [arXiv: hep-th/0411064]



Example 2: Pais-Uhlenbeck model

I = %[dt [Eg — (w] +w3) 2* + wlmgzz]

Gives a fourth-order field equation:

i I

z (1) + (Wi 4+ wd)z (1) +wiwsz(t) =0



Problem: A fourth-order field
equation gives a propagator like

1

B = m T E T

1 1 1
E) =
) = s (7 ‘Eum%)

GHOST!



Two possible realizations...

(I) If a; and a, annihilate the O-particle state [€2),
{11|Q> =0, I-r1'2|ﬂ> =0,

then the energy spectrum is real and bounded below. The state |(2) is the ground
state of the theory and it has zero-point energy % (w1 + wq). The problem with this
realization is that the excited state r:.tg|Q)3 whose energy is w, above ground state,
has a negative Dirac norm given by (Q|asal|Q).

(I) If a; and o), annihilate the O-particle state 2),
ﬂl|Q> =0, HE|Q> =0,

then the theory is free of negative-norm states. However, this realization has

a different and equally serious problem; namely, that the energy spectrum is
unbounded below.



There can be other realizations as well!

Calculate the equivalent Dirac
Hermitian Hamiltonian:

X 2 2
H=e¢92He9? = g— | 29' 5 waj;? + iw%}wgyﬁ
¥ Ywiy 2 2

CMB and P. Mannheim
“No-ghost Theorem for the Fourth-Order Derivative Pais-Uhlenbeck Oscillator Model”
Physical Review Letters 100, 110402 (2008)



Example 3: Double-scaling limit in QFT

PT-symmetric reformulation of the theory

New O(N + 1)-symmetric partition function

7 = R{:/dw“x e L

Take N to be an even integer.
The Laﬂ'ra.ngian L is
€ N+1

, 14+£/2
L= E .r ( E .“-)
:') _|_ ) _|_ = - ..-il
=1
The integral is takon on the real axis and it converges if £ < 1.
We let A = gN~*/? and again introduce the radial variable
r by Z: +l1 r2 = N7, The crucial assumption that N is even

allows us to E’hti‘lld the radial integral to the entire real-r axis:

1 > o o o
ZZSANH/ dr e NVET) L =r1%/24gr*(ir)°/(24<)—logr

>



Boundary conditions on integral: Path of integration lies in a
pair of P7T -symmetric Stokes wedges centered about —me /(44-2¢)
and —(4m + me)/(4 + 2¢). The wedges have angular opening
m/(2 + ) and contain the real-r axis if ¢ < 1. As & increases
above 1, the wedges rotate downward into the complex plane and
become narrower. At ¢ = 2 the wedges are centered about —m /4
and —3m /4 and have angular opening 7 /4.

D W) u D
/!
U D D u
N,
0 U ] \

T~ AﬂF_'_lEﬁTL(ﬁ}Q_lfﬁﬂ N‘”P’Bi(fﬁf?’) o—27/3




Lots of possible future applications:

1. PT Higgs model: —g¢* theory is asymptotically
free, stable, conformally invariant, and (¢) #0

2.PT QED eA, J* like a theory of magnetic charge,
asymptotically free, opposite Coulomb force

3. PT gravity: Ge,, T*” has a repulsive force

4. PT Dirac equation allows for massless neutrinos
to undergo oscillations



That’s all — Thanks for listening!

Go away and think about PT-symmetric quantum theory.
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ONE-dimensional Anharmonic Oscillator

Go to polar coordinates:

- ) ]. Jf-j lf_,r i
1[|r — -+ _|__
..'I'_J"— ,r"- _2]' T

Double scaling condition:
ey 2 a3 ” 6 9, 0
Vilr)=—5 +pr+gr =0, and V'(r)=——+p" +3gr" =10
- r

The problem:
geriv = —(2/3)*%1% ~ —0.544331°  Negative!!



As you approach the critical coupling...
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derit + 0.6 where ger; = —0.544331 Geriv + 0.4
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PT-symmetric O(N) anharmonic oscillator

In polar coordinates:

Transform this Hamiltonian to one that is isospectral...



Pair of exactly isospectral Hamiltonians

anomaly

CMB, D. C. Brody, J.-H. Chen, H. F. Jones , K. A. Milton, and M. C. Ogilvie
Physical Review D 74, 025016 (2006) [arXiv: hep-th/0605066]



The isospectral potential valid on the real-s axis:

1 (1, :
1{53——— _Lq (—‘-. —l)

Critical coupling: gerir = (2/3)%% a2 0.544331
Universal function: —y"(t) 4+~ (1 — ) v(t) = 0

ﬂlr:%ﬁll I; G“:IJ-!



As you approach criticality:

g = Geriy — 0.5 where g.;, = 0.544331 9 = Geriv — 0.3 where g.;

g = Gerit



G measures departure from critical coupling...

Zero dimensions: G ~ N~1/3

One dimension: G~ N5



