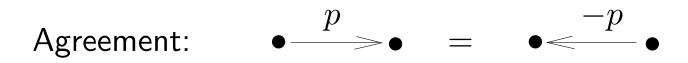
Quiver mutations, reflection groups and curves on punctured disc

Anna Felikson Durham University

(joint with Pavel Tumarkin)

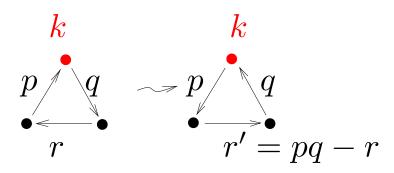
Cluster Algebras and the Geometry of Scattering Amplitudes, March 3-5 2020 University of Edinburgh, Higgs Centre for Theoretical Physics • Quiver is a directed graph without loops and 2-cycles.



Quiver is a directed graph without loops and 2-cycles.

Agreement:
$$\bullet \longrightarrow \bullet = \bullet \longleftarrow -p$$

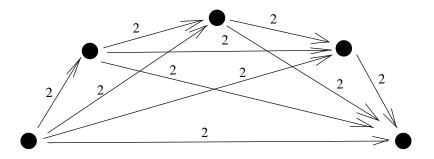
- Mutation μ_k of quivers:
 - reverse all arrows incident to k;
 - for every oriented path through k do (i.e. p,q>0, r any)



Notation: Q quiver, b_{ij} arrows $i \to j$ $(b_{ij} = -b_{ji})$. n = #(vertices of Q).

Settings: • Q is acyclic quiver: no oriented cycles in Q after reordering of vertices, $b_{ij} \geq 0$ for i < j.

• Q is 2-complete: $b_{ij} \geq 2$.



•
$$Q = (b_{ij})$$
 \longrightarrow $M = \begin{pmatrix} 2 & -|b_{ij}| \\ 2 & 2 \\ -|b_{ij}| & 2 \end{pmatrix} = \langle v_i, v_j \rangle$

 (v_1,\ldots,v_n) - basis of quadratic space V of same signature as M.

$$Q = (b_{ij}) \qquad \leadsto \qquad M = \begin{pmatrix} 2 & -|b_{ij}| \\ 2 & 2 \\ -|b_{ij}| & 2 \end{pmatrix} = \langle v_i, v_j \rangle$$

 (v_1,\ldots,v_n) - basis of quadratic space V of same signature as M.

• Given $v \in V$ with $\langle v, v \rangle = 2$, consider reflection

$$r_v(u) = u - \langle u, v \rangle v.$$

•
$$Q = (b_{ij})$$
 \longrightarrow $M = \begin{pmatrix} 2 & -|b_{ij}| \\ 2 & 2 \\ -|b_{ij}| & 2 \end{pmatrix} = \langle v_i, v_j \rangle$

 (v_1,\ldots,v_n) - basis of quadratic space V of same signature as M.

• Given $v \in V$ with $\langle v, v \rangle = 2$, consider reflection

$$r_v(u) = u - \langle u, v \rangle v.$$

• Let $G = \langle s_1, \dots, s_n \rangle$ where $s_i = r_{v_i}$.

G acts discretely in a cone $C \subset V$ with fundamental domain

$$F = \bigcap_{i=1}^n \Pi_i^-, \quad \text{where } \Pi_i^- = \{u \in V \mid \langle u, v_i \rangle < 0\}.$$

Acyclic quiver $Q \leadsto \text{reflection group } G = \langle s_1, \dots, s_n \rangle$ with chosen generating reflections

Acyclic quiver $Q \leadsto \text{reflection group } G = \langle s_1, \dots, s_n \rangle$ with chosen generating reflections

Mutation

→ Partial reflection

$$\mu_k(v_i) = \begin{cases} v_i - \langle v_i, v_k \rangle v_k, & \text{if } k \to i \text{ in } Q \\ -v_k, & \text{if } i = k \\ v_i, & \text{otherwise} \end{cases}$$

Acyclic quiver $Q \rightsquigarrow \text{reflection group } G = \langle s_1, \dots, s_n \rangle$ with chosen generating reflections

$$\mu_k(v_i) = \begin{cases} v_i - \langle v_i, v_k \rangle v_k, & \text{if } k \to i \text{ in } Q \\ -v_k, & \text{if } i = k \\ v_i, & \text{otherwise} \end{cases}$$

new set of generators in $G = \langle s'_1, \dots, s'_n \rangle$:

$$s_i' = egin{cases} s_k s_i s_k, & ext{if } k o i ext{ in } Q \ s_i, & ext{otherwise} \end{cases}$$

Acyclic quiver $Q \leadsto \text{reflection group } G = \langle s_1, \dots, s_n \rangle$ with chosen generating reflections

Mutation

→ Partial reflection

$$\mu_k(v_i) = egin{cases} v_i - \langle v_i, v_k \rangle v_k, & \text{if } k o i \text{ in } Q \ -v_k, & \text{if } i = k \ v_i, & \text{otherwise} \end{cases}$$

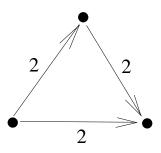
Theorem. (Barot, Geiss, Zelevinsky'06; Seven'15)

The values $\langle v_i, v_j \rangle$ change under mutations in the same way as the weights of the arrows in Q.

Remark: c-vectors and Y-seeds

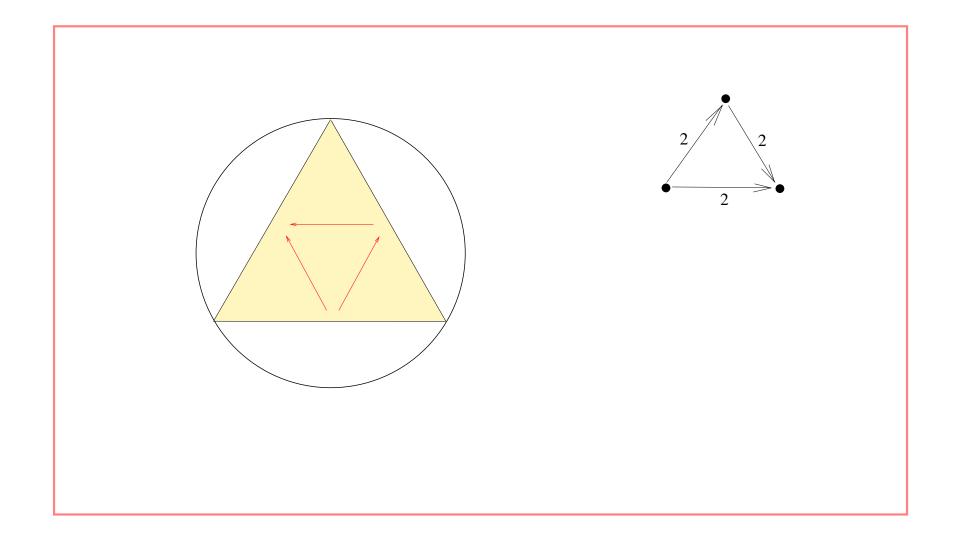
- If (v_1^0, \ldots, v_n^0) are the initial vectors, then vectors (v_1, \ldots, v_n) (written in the basis (v_1^0, \ldots, v_n^0)) are **c**-vectors.
- The collection (v_1, \ldots, v_n) is a Y-seed.

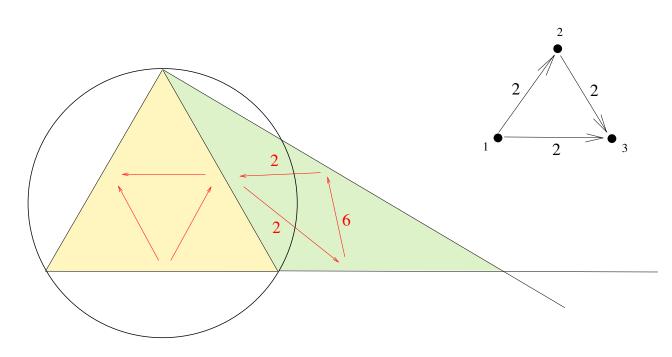
Example:



Then
$$V = \langle v_1, v_2, v_3 \rangle = \mathbb{H}^2$$
 $|\langle u, v \rangle| = \begin{cases} 2 \cosh d, & \text{if } \langle v, u \rangle > 2, \\ 2 \cos \alpha, & \text{otherwise} \end{cases}$

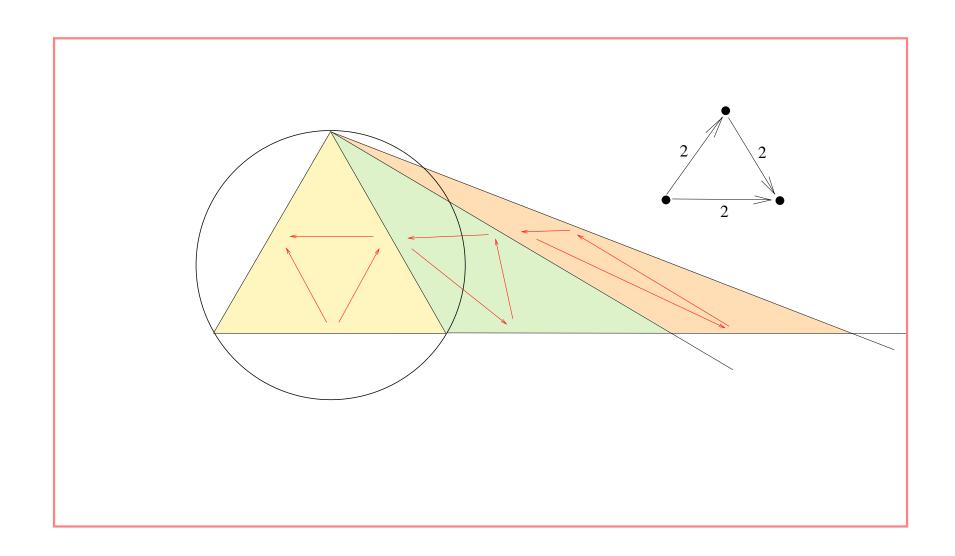
 $\langle v_i, v_j \rangle = 2 \quad \Rightarrow \quad \Pi_i \text{ is parallel to } \Pi_j.$

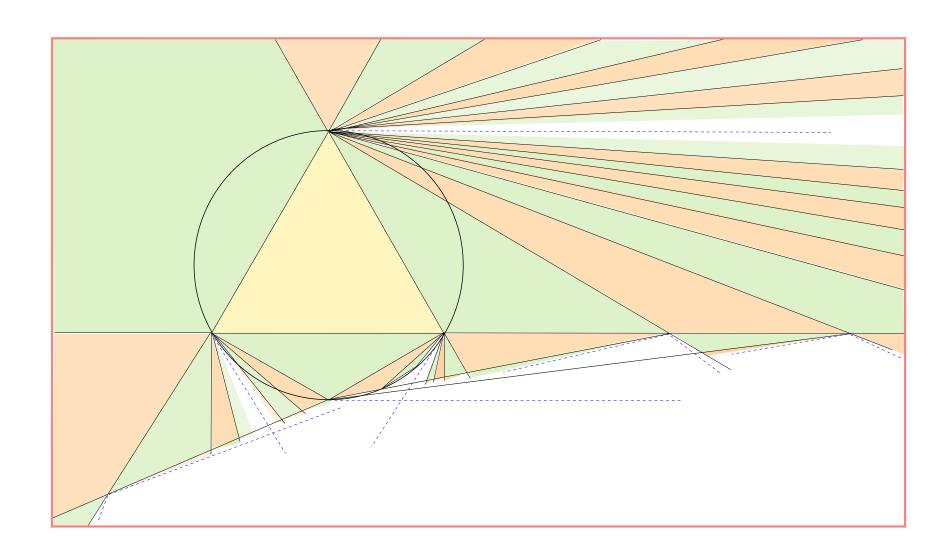




$$v_3' = \mu_2(v_3) = v_3 - \langle v_3, v_2 \rangle v_2 = v_3 + 2v_2$$

 $\langle v_3', v_1 \rangle = \langle v_3', v_1 \rangle + 2\langle v_2, v_1 \rangle = -6$





Corollaries from this picture (examples):

- All quivers in the mutation class of Q are 2-complete.
- All acyclic quiver in this mutation class look "similar" (only differ by permutations and directions of arrows).
- One can move from one acyclic representative to any other via sink/source mutations only.
- Exchange graph for this mutation class is a tree.

Less known:

How to describe seeds (= sets of walls in one domain)?

How to describe seeds (= sets of walls in one domain)?

Consider the ordering of the vertices of Q from source to sink (so that $b_{ij} > 0$).

Let s_i be generator of G corresponding to i.

How to describe seeds (= sets of walls in one domain)?

Consider the ordering of the vertices of Q from source to sink (so that $b_{ij} > 0$).

Let s_i be generator of G corresponding to i.

Then:

If reflections $r_1, \ldots, r_n \in G$ form a seed then one can reorder them so that $r_1 r_2 \ldots r_n = s_1 s_2 \ldots s_n$.

How to describe seeds (= sets of walls in one domain)?

Consider the ordering of the vertices of Q from source to sink (so that $b_{ij} > 0$).

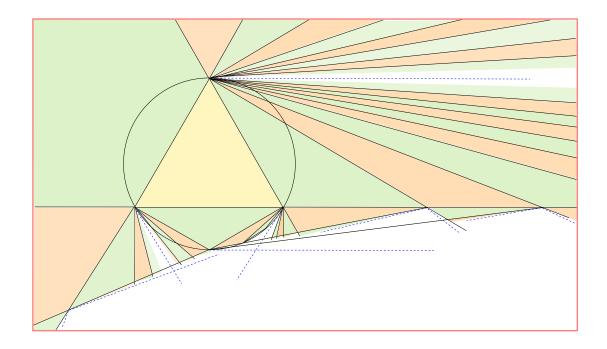
Let s_i be generator of G corresponding to i.

Theorem (Speyer, Thomas' 10)

A collection of roots u_1, \ldots, u_n forms a seed iff

- 1) If u_i and u_j are both positive roots (or both negative) then $\langle u_i, u_j \rangle \leq 0$;
- 2) Up to renumbering of u_1, \ldots, u_n , the positive roots precede the negative roots and $r_1r_2 \ldots r_{n-1}r_n = s_1s_2 \ldots s_n$.

• Which reflections appear in the picture?



Or, in other words: How to characterise c-vectors?

Which reflections appear in the picture?

```
Answer: ("\Rightarrow" Nagao'13, "\Leftarrow" Nájera Chávez'14) r \in G appears in the picture iff the corresponding root u is a real Schur root (or its opposite).
```

(real Schur roots are dimension vectors of indecomposable rigid modules over the path algebra of Q).

Which reflections appear in the picture?

```
Answer: ("\Rightarrow" Nagao'13, "\Leftarrow" Nájera Chávez'14) r \in G appears in the picture iff the corresponding root u is a real Schur root (or its opposite).
```

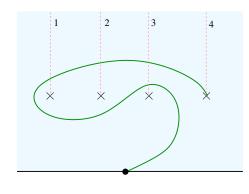
Conjecture: (Kyungyong Lee – Kyu-Hwan Lee'17)
Schur roots are in bijection with
simple curves in some surfaces.

Which reflections appear in the picture?

Answer: (" \Rightarrow " Nagao'13, " \Leftarrow " Nájera Chávez'14) $r \in G$ appears in the picture iff the corresponding root u is a real Schur root (or its opposite).

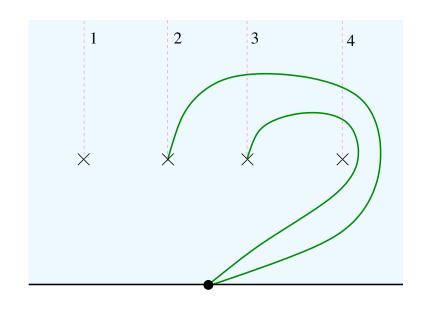
Our answer:

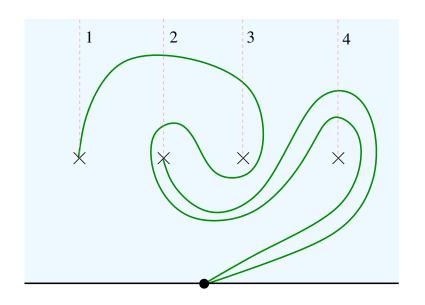
Real Schur roots = arcs in a disc



 $s_3s_1s_2s_3$ $s_4s_3s_2s_1s_3$

Two arcs form a bad pair if one is a prefix for another:



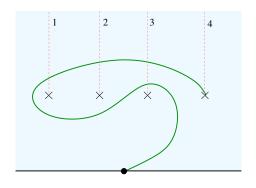


$$\frac{s_4 s_3}{s_4 s_3 s_2 s_3 s_4}$$

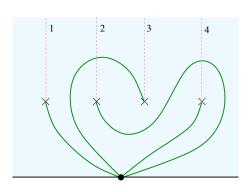
$$\frac{s_4 s_2 s_3 s_2 s_1 s_2 s_3 s_2 s_4}{s_4 s_2 s_4}$$

Theorem. (F., Tumarkin'17)

 Real Schur roots = arcs in a disc



Seeds =
 collections of
 non-intersecting arcs
 with at most one
 consecutive bad pair



Reflection group G constructed above is a presentation of the universal Coxeter group

$$\langle s_1, \dots, s_n \mid s_i^2 = e \rangle.$$

(This does not depend on Q, if Q is acyclic and 2-complete).

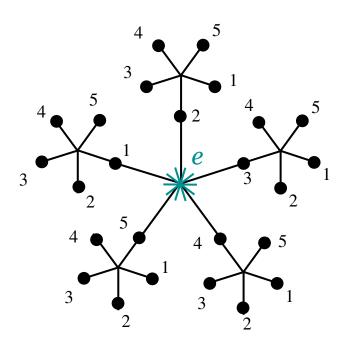
Reflection group G constructed above is a presentation of the universal Coxeter group

$$\langle s_1, \dots, s_n \mid s_i^2 = e \rangle.$$

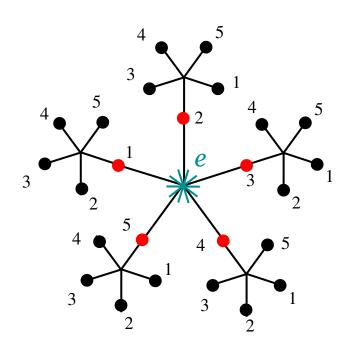
(This does not depend on Q, if Q is acyclic and 2-complete).

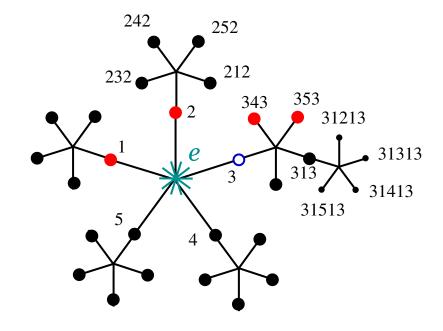
n-regular tree:





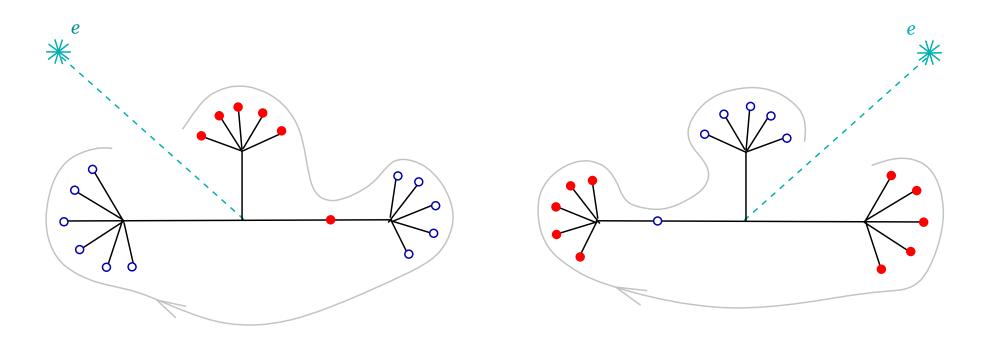






Initial seed

After mutation μ_3

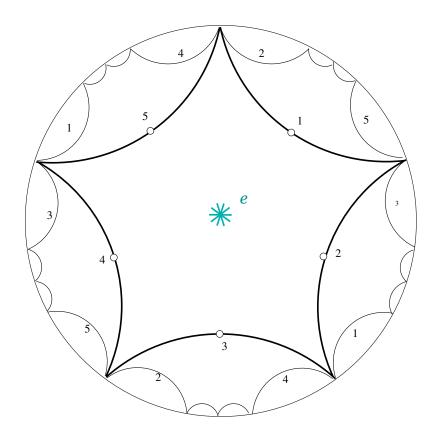


$$r_1r_2\dots r_{n-1}r_n=s_1\dots s_n$$

Proof: induction on the number of mutations.

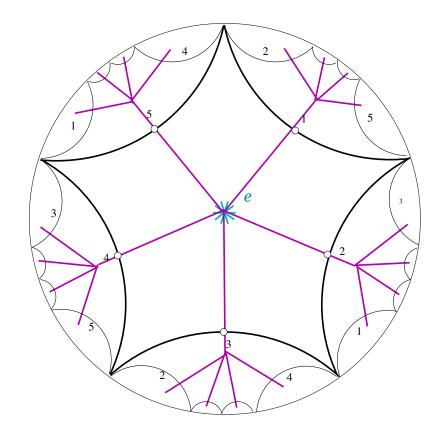
3. Cayley graph in the hyperbolic plane

• G is isomorphic to a group generated by $\pi\text{-rotations}.$ Denote it by $G_{rot}.$



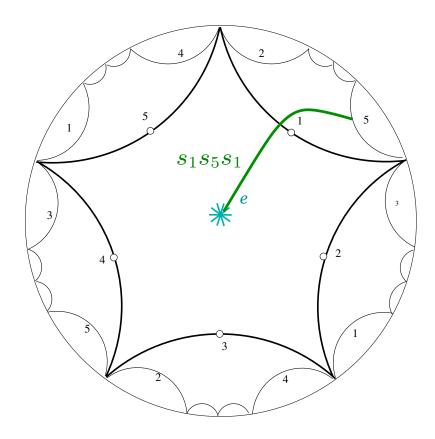
3. Cayley graph in the hyperbolic plane

- G is isomorphic to a group generated by $\pi\text{-rotations}.$ Denote it by $G_{rot}.$
- Cayley graph is dual to the tessellation.



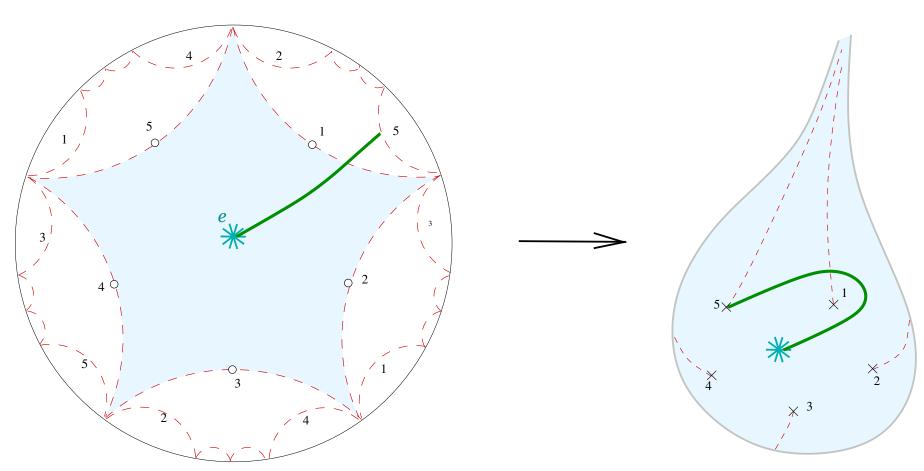
3. Cayley graph in the hyperbolic plane

- G is isomorphic to a group generated by π -rotations. Denote it by G_{rot} .
- Cayley graph is dual to the tessellation.
- reflection $r \in G$ may be represented by a path.

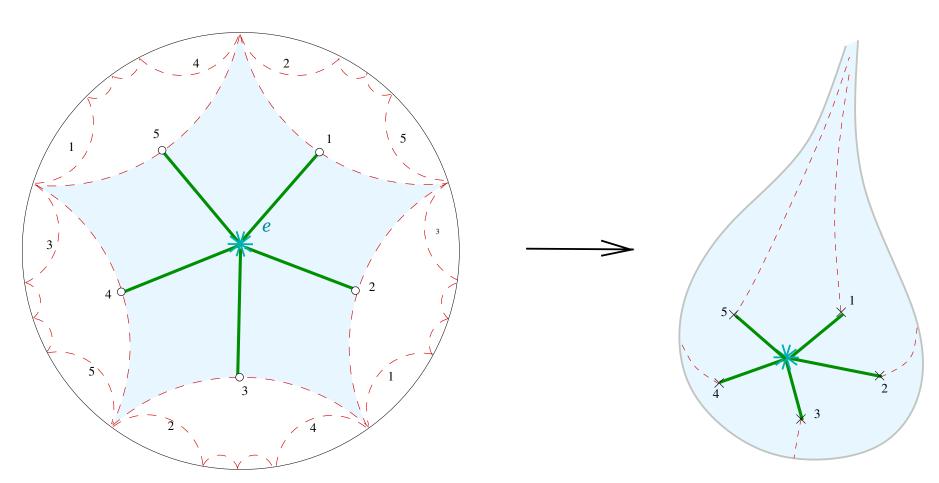


3. Orbifold: from \mathbb{H}^2 to an orbifold

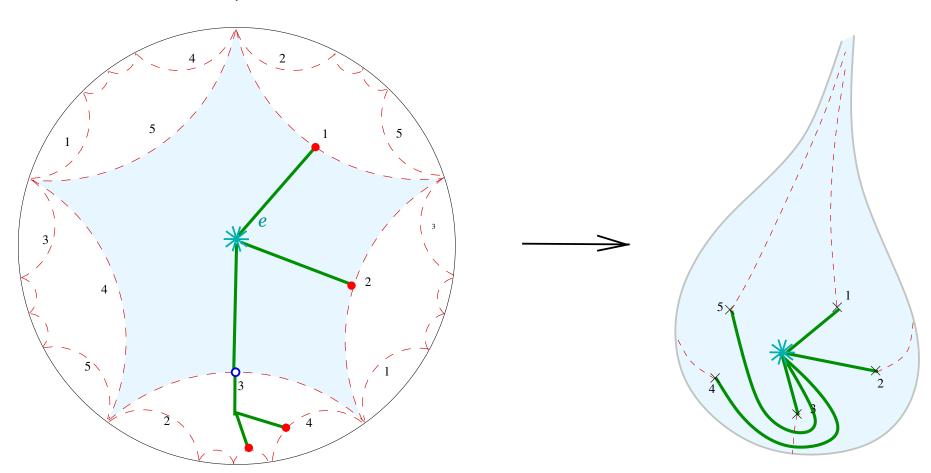
Consider \mathbb{H}^2/G_{rot} :



Initial seed:



After mutation μ_3 :



Let $s \in G$ be a reflection, let u_s be the corresponding root u. Let $\hat{\gamma}_s$ be the arc in \mathbb{H}^2 , let γ_s be its projection to the orbifold $\mathcal{O} = \mathbb{H}^2/G_{rot}$.

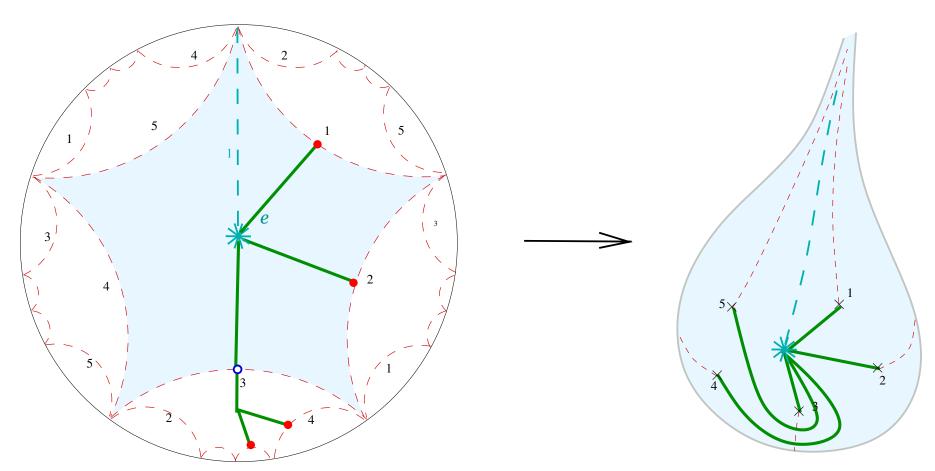
Let $s \in G$ be a reflection, let u_s be the corresponding root u. Let $\hat{\gamma}_s$ be the arc in \mathbb{H}^2 , let γ_s be its projection to the orbifold $\mathcal{O} = \mathbb{H}^2/G_{rot}$.

Claim.

- If u_s is a Schur root then γ_s is simple.
- If u_1, \ldots, u_n is a seed then $\gamma_{u_1}, \ldots, \gamma_{u_n}$ are non-intersecting.
- If u_1, \ldots, u_n is a seed then there exists a geodesic ray $l \in \mathcal{O}$ such that no of γ_{u_i} intersects l.

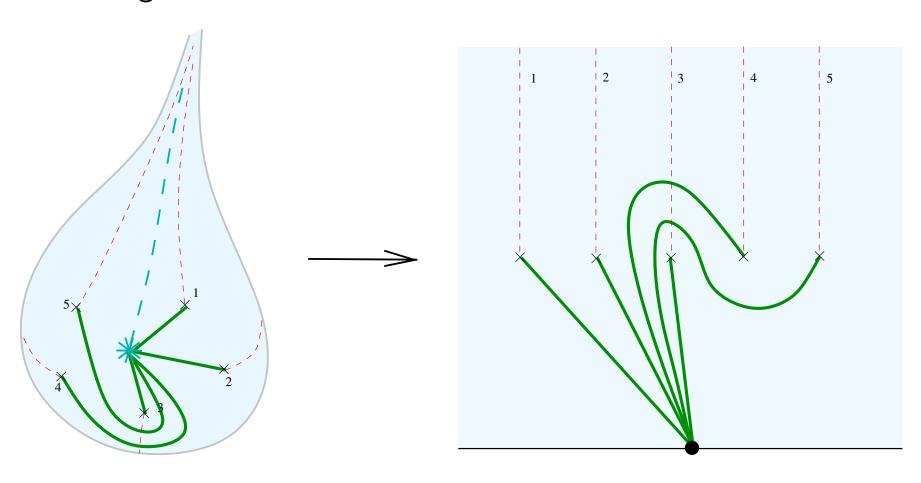
Proof: induction by the number of mutations.

After mutation μ_3 :



4. From orbifold to disc

Cut along l:

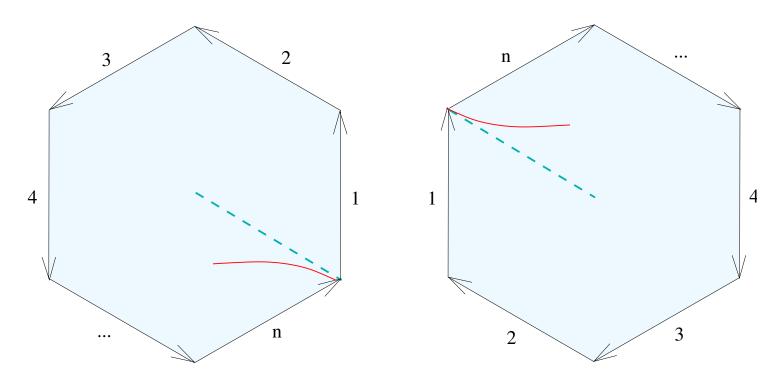


Remarks

- This explains how to map Schur roots to arcs in the disc.
 Why do we get all arcs?
 - (a) every (good) set of arcs corresponds to a seed; (use the braid grup $\mathbb{B}_n = Aut(D)$ to verify conditions given by Speyer and Thomas)
 - (b) every arc can be included into a (good) set of arcs. (induction on n)
- The "Schur roots" part of our theorem implies Lee Lee conjecture. (after taking a double cover of the orbifold \mathcal{O})

Lee-Lee conjecture:

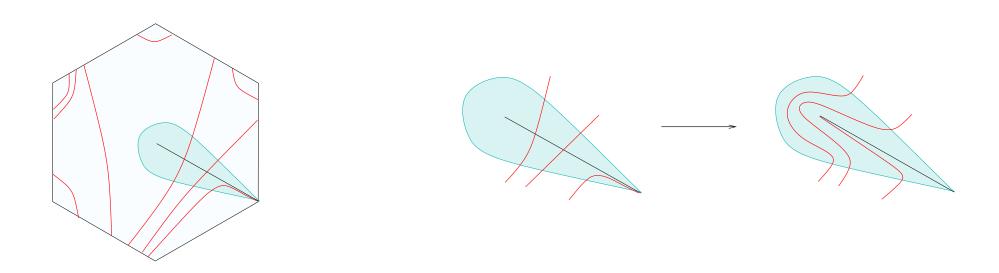
Schur roots are in bijection with arcs on the following surface S:



- Conjectured for all acyclic quivers (not necessarily 2-complete).
- Proved for 2-complete quivers of rank 3.

Lee-Lee conjecture \Leftrightarrow our theorem: for 2-complete Q

Surface S is a double cover of the orbifold \mathcal{O} .



Curves on $S \longrightarrow arcs$ on the disc.

Open questions:

- General (not necessirily 2-complete) acyclic quivers?
- When are two roots compatible?
 (i.e. when there exists a seed containing them both?).
- Is a collection of mutually compatible roots compatible itself?

