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Introduction

In recent years we've seen remarkable progress on the problem of
unlocking the hidden mathematical structure of quantum �eld
theories.

Other talks may touch on applications to other �eld theories, but
the focus of my talk (and several others) will be the particularly
special

planar N = 4 supersymmatric Yang-Mills theory

or SYM theory for short.



Why Mathematicians May Like SYM Theory

Think of SYM theory as an �encyclopedia� �lled with collections of
functions with remarkable properties and interrelationships.

In fact, the properties are so remarkable that the functions of SYM
theory �barely exist�...

... to the extent that many aspire to �nd some purely mathematical
problem to which these functions are the solution.



Introducing the Cast of Characters

Entries in this encyclopedia of functions are indexed by a pair of
integers

n≥ 6 labels the number of particles
(n= 3,4,5 are special cases)

k ∈ {0,1, . . . ,n−4} labels the �helicity sector�
(called MHV, NMHV, . . . NkMHV)

Each n-particle function An,k depends on several continuous
variables.

One of these variables, λ, is special and usually used to study series
expansions

An,k(λ)=
∞∑
L=0

λLA
(L)
n,k

(which are believed to have a non-zero and �nite radius of
convergence) where L is called the loop order.



Introducing the Cast of Characters

What is A
(L)
n,k a function of?

Using �momentum twistor� variables [Hodges] and the �dual
conformal invariance� [Drummond, Henn, Korchemsky, Sokatchev]
of SYM theory, we know that it is a function on the con�guration
space

Confn(P
3)'Gr(4,n)/(C∗)n−1

(the quotient group acts by independently rescaling columns).

The fact that this space has the structure of a cluster Poisson
variety [Gekhtman, Shapiro, Vainshtein] apparently underlies the
connection between amplitudes in SYM theory and cluster algebras
[Golden, Goncharov, MS, Vergu, Volovich].



Introducing the Cast of Characters

In order to make contact with some of the other talks, let me
clarify that to each amplitude A

(L)
n,k there is an associated,

canonically de�ned integrand I
(L)
n,k related by

A
(L)
n,k =

∫
C

(L)
n,k

I
(L)
n,k

where C
(L)
n,k is a contour in the con�guration space of L lines in P3.

Ï Integrands are always rational functions on
ConfL lines(P

3)×Confn(P
3),

Ï while (for L> 0) amplitudes are transcendental, multi-valued
functions on Confn(P

3).



Amplitude Singularity Theory

Following ideas that go back to Heisenberg, a goal of the �S-matrix
program� is to be able to determine amplitudes in quantum �eld
theory based on a few physical principles and a thorough knowledge
of their analytic structure.

In the �old� approach this was hampered in part by the di�culty of
identifying a suitable domain on which amplitudes could be
expected to actually be analytic.

In generic �eld theories, this is manifested in perturbation theory by
L-loop amplitudes typically having singularities that approach closer
to the real axis (in some putative �physical domain�) as L increases.

But in SYM theory there is a chance for Heisenberg's goal to be
realized.



Amplitude Singularity Theory

The poles of A
(L)
n,k are completely understood; they occur on the

subvariety of Confn(P
3) given by∏

i ,j
〈i i+1 j j+1〉 = 0

(the bracket denotes a Plücker coordinate on Gr(4,n)).

More interesting, and less trivial, are the branch points.

Theorem: For n= 6,7, A
(L)
n,k can have branch points only on the

subvariety of Confn(P
3) given by

∏
i ai = 0, where the product

runs over the cluster variables of the Gr(4,n) cluster algebra.



Amplitude Singularity Theory

I'll sketch the proof shortly; for now let me note that historically,
evidence for this theorem (and the much stronger statement, still a
conjecture, that the cluster variables provide a complete symbol
alphabet for these amplitudes), was slowly collected over several
years of very di�cult calculations.

Del Duca, Duhr, Smirnov, Goncharov, Spradlin, Vergu, Volovich,
Caron-Huot, Dixon, Drummond, Henn, He, von Hippel,
Pennington, Harrington, Dulat, McLeod, Papathanasiou



Amplitude Singularity Theory

I'll sketch the proof shortly; for now let me note that historically,
evidence for this theorem (and the much stronger statement, still a
conjecture, that the cluster variables provide a complete symbol
alphabet for these amplitudes), was slowly collected over several
years of very di�cult calculations.

[Some amplitudes belong to a class of functions called generalized
polylogarithms. A symbol letter a of such a function is an algebraic
function on Confn(P

3) signifying the presence of a branch cut from
a= 0 to a=∞.]



Amplitude Singularity Theory

What happens for n> 7? Two new features:

Ï math: Gr(4,n) has in�nitely many cluster variables

Ï physics: it is known that amplitudes have symbol letters that
are algebraic functions of Plücker coordinates, and hence are
not cluster coordinates of Gr(4,n)

I will come back to (and other talks also discuss) the second point.

Regarding the �rst point: unlike for n= 6,7, it could have happened

that the subvariety of Confn(P
3) on which A

(L)
n,k has branch points

becomes more complicated as L increases, perhaps without bound.

This would be a signi�cant complication; fortunately we know it is
not true.



The Landau Equations

Landau (1959) provided a criterion for determining the singularity
locus of amplitudes in quantum �eld theory.

A (planar) Landau graph is a planar graph with

1. a complex Feynman parameter αj assigned to each edge j ,

2. a momentum vector qj ∈C4 assigned to each directed edge j
(with qj →−qj under reversal of the edge orientation,

3. and momentum conservation
∑

j qj = 0 imposed at each vertex,

4. except at certain privileged vertices called terminals



The Landau Equations

We can impose momentum conservation at the terminals by
attaching some �external edges� that carry momentum into or out
of the diagram.



The Landau Equations

An L-loop amplitude can have singularities only when the external
momenta are such that the Landau equations

αjq
2
j = 0 for each edge j , and∑

edges j∈L

αjqj = 0 for each closed loop L

admit solutions for {αj ,qj }.

The solution set of the Landau equations is preserved under the
graph moves familiar from circuit theory.

[Dennen, Prlina, Spradlin, Stanojevic, Volovich]



The Landau Equations

In massless theories (including SYM theory), the (locus of solutions
of the) Landau equations is invariant under

1
2

3 12

3



Planar Graph Reduction

The problem of studying the reducibility of m-terminal graphs
under the basic circuit operations is well studied in the
mathematical literature.

The key result, for our purposes, comes from Gitler, who proved
that any 2-connected m-terminal plane graph, with all terminals
lying on a common face (which we take to be the �outer� face), can
be reduced to what we call the m-terminal ziggurat graph, (or a
minor thereof).



The Kinematic Domain

It follows that

Theorem: For each n there is a �nitely generated
codimension-one subvariety Sn ⊂Confn(P

3) (the Landau
singularity locus of the n-terminal ziggurat graph) with the

property that for all k and L, A
(L)
n,k has branch point

singularities only on Sn ⊂Confn(P
3).

In words: the (asymptotic) complexity of the singularity locus of
amplitudes in SYM theory is determined only by n, and does not
grow with loop order.

(There are accidental cancellations for very small k and/or L.)



The Kinematic Domain

It follows that

Theorem: For each n there is a �nitely generated
codimension-one subvariety Sn ⊂Confn(P

3) (the Landau
singularity locus of the n-terminal ziggurat graph) with the

property that for all k and L, A
(L)
n,k has branch point

singularities only on Sn ⊂Confn(P
3).

[Note: This analysis holds for all amplitudes; it is not restricted to
those of polylogarithmic type.]



The Kinematic Domain and Positivity

So far we have only been able to explicitly compute Sn ⊂Confn(P
3)

for n= 6, and it is consistent with the Gr(4,6) symbol alphabet, but
all evidence available to date is consistent with the

Conjecture: Sn has empty intersection with the positive
con�guration space Gr+(4,n)/T .

In words: amplitudes do not have singularities, at any loop order, in
the positive domain (〈i j k l〉 > 0 for i < j < k < l).



Introduction and Motivation

Because we are interested in a thorough knowledge of the analytic
structure of amplitudes, and because their singularities can only
occur on the boundary (or outside) of Gr+(4,n)/T , we are
particularly keen to understand its boundary structure.

That is tantamount to identifying a suitable closure or
compacti�cation of Gr+(4,n)/T .

Moreover, motivated by similar problems that arise in physics (the
open string moduli space), we are motivated to seek polytopal
realizations of these compacti�cations, which exhibit all of the
combinatorics of their boundaries (of arbitrary codimension).



Example: Six Particles

Using variables

u = 〈1234〉〈1456〉
〈1245〉〈1346〉 v = 〈2345〉〈1256〉

〈2356〉〈1245〉 w = 〈3456〉〈1236〉
〈1346〉〈2356〉

one �nds that the singularity locus of six-particle amplitudes is

S6 =
⋃
s∈S6

{s = 0}, S6 = {u ,v ,w ,1−u ,1−v ,1−w ,
1

u
,
1

v
,
1

w
}



Example: Six Particles

In the (u,v ,w) coordinate system, the six-particle positive domain
Gr+(4,6)/T is the interior of the unit cube. Amplitudes have no
singularities inside this domain at any �nite loop order in
perturbation theory.

Question: Does this picture accurately portray the boundary
structure of the closure Gr+(4,6)/T?



Boundary Example

Let me illustrate the meaning of this question by an example.

Consider a toy model of a two-dimensional �kinematic space�
parameterized by variables x ,y that take values in the interior of
the unit square: x ,y ∈ (0,1).

Now let's ask the question: is the point (1,1) really just a point, in
the natural closure of this space?

Well, it depends what we mean by �natural�, and that is dictated by
the class of functions that we �nd ourselves interested in.

For example, if we only encounter polynomials in x and y , then
indeed the natural closure of the interior of the square is just a
square, and (1,1) is really a point.



Boundary Example

But suppose the functions under study depend on quantities such as

{u1, . . . ,u5} =
{
x , y ,

1−y

1−xy
, 1−xy ,

1−x

1−xy

}

Then if we approach the point (1,1) by taking t → 0 along the curve

x(t)= 1−αt y(t)= 1−βt
where α,β> 0, we �nd that

{u1, . . . ,u5} →
{
1, 1,

β

α+β , 0,
α

α+β
}

Then it is evident that (1,1) is not a single point, but a line
segment parameterized by u3 = 1−u5 ∈ (0,1) as α,β range over all
positive numbers.

The (x ,y) coordinate system is not adequate to resolve this
structure.



Boundary Example

In this case the interior of the unit square in (x ,y) space is naturally
mapped into the interior of a pentagon. Each edge of the pentagon
is labeled by the unique �u� variable that vanishes on that edge.

Where does this �contrived� example come from? Consider

Z =
(
1 1 1 0
0 xy y 1 1

)
For x ,y ∈ (0,1) the minors of this matrix satisfy

〈i j〉 > 0 ∀i < j

If we read each column of this matrix as a homogeneous coordinate
in P1, we see that this corresponds to a con�guration of �ve
ordered points

0< xy < y < 1<∞
on the real axis, modulo conformal invariance (SL(2) acting from
the left).



Boundary Example

Where does this �contrived� example come from? Consider

Z =
(
1 1 1 0
0 xy y 1 1

)
So this is a con�guration of �ve open string vertex operators, the
variables

{u1,u2,u3,u4,u5} =
{ 〈13〉〈45〉
〈14〉〈35〉 ,

〈12〉〈45〉
〈13〉〈25〉 ,

〈25〉〈34〉
〈24〉〈35〉 ,

〈15〉〈24〉
〈14〉〈25〉 ,

〈14〉〈23〉
〈13〉〈24〉

}
are conformally invariant cross-ratios, and the �compacti�cation�
described above � wherein the point (1,1) was blown up into a
line segment � is just the familiar Deligne-Mumford
compacti�cation of this moduli space.



Polytopes for SYM Theory

Moving back to SYM theory: As emphasized, it should be the
amplitudes themselves that tell us the appropriate compacti�cation
of the positive domain on which they are actually de�ned.

As a shortcut, to sidestep that seemingly di�cult problem, we will
take a cue from string theory and investigate natural
compacti�cations of Gr+(4,n)/T that generalize the well-known
Deligne-Mumford compacti�cation of the string moduli space
Gr+(2,n)/T .



Polytopes for SYM Theory

For k > 2 the Gr+(k ,n)/T problem is more challenging than
Gr+(2,n)/T because in the latter each codimension-one boundary
corresponds to a collision between adjacent points, but in the
former codimension-one boundaries of the moduli space can be
realized in more complicated ways, such as three adjacent �points�
becoming collinear, etc.

[An equivalent problem, arising from a variety of di�erent
motivations (generalized bi-adjoint φ3 theory; amplituhedra; ...?),
has recently been considered by many authors, including Cachazo,
Early, Guevara, Mizera, Drummond, Foster, Gürdo�gan, Kalousios,
Rojas, Borges, Umbert, Zhang, He, Ren, Henke, Papathanasiou,
�ukowski, Parisi, Williams, Moerman and will likely be discussed in
several other talks.]



Construction of Polytopes

We use a construction due to N. Arkani-Hamed, S. He and T. Lam
(equivalent, but dual, to the construction of Speyer and Williams
(2005) using tropical geometry):

given a (cluster) chart ~x= {x1, . . . ,xm} where m= 3(n−5) and each
x ranges over (0,∞) in the interior of Gr+(4,n)/T , [for example,
x ,y in the toy model considered above]

and given some collection of variables a1(~x), . . . ,ak(~x) (typically
k Àm) [for example,

x , y , 1−x , 1−y , 1−xy

in the toy model considered above]

we compute the Minkowski sum of the Newton polytopes
associated to the a's.



Construction of Polytopes

The (dual of the) Speyer-Williams fan is the polytope obtained by
taking the Minkowski sum over all Plücker coordinates...

... but one can make other choices. For example, keeping only
Plücker coordinates of the form 〈i i+1 j j+1〉 and 〈i j−1 j j+1〉 gives,
for n= 7,8, polytopes we call C †(4,n), having f-vectors

(1,595,1918,2373,1393,385,42,1)

(1,49000,249306,536960,635176,447284,189564,46312,5782,274,1)

These polytopes are apparently su�cient to encapsulate all
(currently known) properties of 7- and 8-particle amplitudes, in a
manner that will hopefully be explained in more detail by
Drummond and Papathanasiou.

Notably, Drummond, Foster, Gürdo�gan and Kalousios showed that
all currently-known symbol letters of 8-particle amplitudes can be
extracted from C †(4,8)!



Interlude: Scattering Diagrams

For the physicists:

Cluster variables in a rank d cluster algebra are parameterized by
g-vectors; elements of Zd .

To every cluster a1, . . . ,ad is associated the cone in Rd generated by
the corresponding g1, . . . ,gd .

Cluster cones are non-overlapping and the union of cluster cones �
called the cluster fan � covers all of Rd if the algebra is �nite,
while otherwise there are �gaps�.

Every integer lattice point inside the cluster fan is naturally
associated to a cluster monomial � a product of powers of cluster
variables from a common cluster.

Lattice points in the gaps are associated to basis elements of the
cluster algebra that are not cluster monomials.



Interlude: Scattering Diagrams

Mathematicians use (what they
call) scattering diagrams to
depict the g-vectors and cluster
cones associated to an algebra;
here's a rank 2 example. To each
integer point in this diagram is
associated some basis element;
those in the white regions are
cluster monomials while those in
the grey �gap� are not cluster
monomials.



Polytopes, Cluster Algebras, and Amplitudes

Back to the polytopes: For six (seven) particles, the 9 (42) normal
directions to the polytopes are generated by g-vectors of the
associated Gr(4,n) cluster algebras. (These are the rays of the
Speyer-Williams fan.)

For eight particles, we �nd that 272 (out of 274) normal vectors are
g-vectors, and therefore correspond to cluster coordinates, many of
which are known to appear in eight-point amplitudes, others of
which might at higher loop order than any calculations have been
done � remember we anticipate that there will exist some �nite
polytope that will encapsulate all-loop order predictions.



Exceptional Rays

But let's look at one of the two remaining normal rays of C †(4,8),
generated by

v= (−1,1,0,1,0,−1,0,−1,1)

This is not a g-vector of the Gr(4,8) cluster algebra, in fact it is
outside the cluster fan � hold on a second, how can one know
this? � We know this because it happens to be one of the
examples studied recently by Chang, Duan, Fraser and Li (CDFL).



Exceptional Rays

Using the algorithm explained in CDFL, one can (in principle)
compute a basis element associated to each integer point along the
ray generated by v. One �nds:

B(1v)=A

B(2v)=A2−B

B(3v)=A3−2AB

where

A= 〈1256〉〈3478〉−〈1278〉〈3456〉−〈1234〉〈5678〉
B = 〈1234〉〈3456〉〈5678〉〈1278〉

Conjecture: these are generated by∑
s≥0

tsB(sv)= 1

1−At+Bt2

which, in particular, is a rational function of t. (Hard to test
further because the computational complexity is O((4s)!).)



Algebraic Directions in General Cluster Algebras

This motivates a purely mathematical question:

Let A be a cluster algebra of rank d , let Zd be a lattice that
parameterizes bases of A , and let B(v) be the basis element
associated to the lattice point v ∈Zd .

For v ∈Zd de�ne
fv(t)=

∑
s≥0

B(sv)ts

Question: under what conditions is fv(t) a rational function of t?

If v lies in the cluster fan of A then it obviously is, since
B(sv)=B(v)s so the series is geometric: fv(t)= 1/(1− tB(v)).

It's easy to check that fv(t) is always rational for surface algebras,
using any of the three types of bases considered by Thurston
(bangles, bands, or bracelets).



Algebraic Directions in General Cluster Algebras

Question: under what conditions is fv(t) a rational function of t?

But it seems to not be true in general, even at rank 2.

Of course, for amplitudes we are primarily interested not in
completely general cluster algebras, but in the Grassmannian
algebras.



Conclusion

Ï n particle scattering amplitudes in SYM theory are
multi-valued functions on Confn(P

3)∼=Gr(4,n)/(C∗)n−1, the
con�guration space of n points in P3.

Ï for each n there is a codimension subvariety Sn; n-point
amplitudes have singularities everywhere on, and only on, Sn.

Ï a central conjecture is that the positive con�guration space
Gr+(4,n)/T lies entirely inside one of the chambers of Sn.

Ï more detailed information about
amplitudes � for example symbol
alphabets and �cluster adjacency�
� is apparently encoded in
combinatoric and cluster algebraic
properties of this con�guration
space, in particular its boundaries.

Ï Because nothing involves the loop order L, these statements
should hold to all �nite loop order, and (we hope)
non-perturbatively.



Conclusion

To do:

Ï Understand which compacti�cation (or, in the dual language,
which tropical fan) �most faithfully� exhibits the properties of
amplitudes, and why.

Ï Harness this knowledge to learn more about amplitudes!

Ï Is there some canonical way in which these spaces beg to have
certain functions naturally associated to them (in a manner
analogous to the way that positive geometries have naturally
associated canonical forms), such that those functions turn out
to precisely be the amplitudes of SYM theory?


