
From matroid subdivisions of hypersimplices to
generalized Feynman diagrams

Nick Early

Perimeter Institute for Theoretical Physics

March 4, 2020

Nick Early Matroid subdivisions and generalized Feynman diagrams



Preview slide

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

Blades on the Universal Octahedron.
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The unreasonable effectiveness of mathematics.

Background. I’ll tell two parallel stories, both starting in
2012-2013, which ultimately joined forces in 2018/2019: my
(math) Ph.D. thesis on symmetries and invariants for
subdivisions of hypersimplices, and the CHY method for
computing biadjoint scattering amplitudes.
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Objectives

Objective (0): interpret the biadjoint scalar scattering
amplitude m(k=2)(In, In) in terms of matroid subdivisions of a
convex polytope known as the (second) hypersimplex, ∆2,n.

Objective (1):

introduce the generalization m(k)(In, In) with
k ≥ 3.

Objective (2) introduce a new mathematical object, the
matroidal blade arrangement, on the vertices of kth
hypersimplex ∆k,n.

Objective (3): show how these arrangements select a natural
set of planar functions on the kinematic space for all n and k.
These define a basis, the planar basis.

Remark: These specialize for k = 2 to the planar basis
introduced by [CHY2013] and denoted Xij in [ABHY2017].
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A model for m(k)(In, In)

The kinematic space Kk,n lives in the space of symmetric

tensors in R(nk):

Kk,n =

{
(s) ∈ R(n

k) :
∑
J:J3a

sJ = 0 for each a = 1, . . . , n

}
.

Goal: to construct m(k)(In, In) inside Kk,n for m(k)(In, In)
using exactly two bits of information: one convex polytope,
the hypersimplex

∆k,n = convex hull
{
x ∈ {0, 1}n :

∑
xi = k

}
and the facets of the simplex1

{x ∈ Rn : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1} .

1More precisely, we need its normal fan.
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Some history

[CHY, 2013]. Scattering equations compute k = 2 biadjoint
scalar scattering amplitudes: finite sum over critical points of
a potential function in the moduli space of n points on the
torus quotient of the Grassmannian X (2, n) = G (2, n)/ (C∗)n,

S =
∑

1≤i<j≤n
sij log

(
det

[
xi xj
yi yj

])
,

where (sij) are symmetric matrices, with entries Mandelstam
invariants; for well-definedness one assumes∑

j 6=i

sij = 0 for all i .

One writes, schematically

m(2)(In, In) =

∫
X (2,n)

δ

(
∂S
∂y

)
PT (12 · · · n)2,

where the SL(2)-measure is implicit.
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Motivation for the generalized biadjoint scalar theory

Key observation: duality for Grassmannians implies that CHY
holds for both moduli spaces:

X (2, n)←− · · · −→ X (n − 2, n),

where we identify X (k , n) = G (k , n)/(C∗)n.
CHY missed the opportunity to ask what comes between!
Meanwhile,

I wrote my math Ph.D. thesis [E, 2012 - 2016]
about permutation invariants of matroid polytopes in
hypersimplices and started thinking about amplitudes.
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q-plate in dimension 3
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Basic ingredients of the generalized biadjoint scalar theory,
(here for k=3)

[CEGM March, 2019]. We generalized the CHY method, from
n points on the Riemann sphere, X (2, n), to the configuration
space X (k, n) of n points in CPk−1.

This filled in the gap X (2, n)⇔ X (n − 2, n)...

Along the way we discovered that some of our formulas
appeared in the math literature, in the context of the tropical
Grassmannian (and its positive part)!

Then the connection to matroid subdivisions quickly fell into
place.

Now define a (potential) function S : X (3, n)→ C:

S =
∑

1≤a<b<c≤n
sabc log (|abc|)
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Introducing m(3)(In, In)

Generalized Mandelstam invariants sabc are linear functions on

the space of (symmetric) tensors, R(n3).
Rem. The sabc satisfy

∑
{(a<b)6=t} sabt = 0 for each t if and

only if S is well-defined on X (3, n).
[CEGM2019]. The k-Parke Taylor factor (in the natural cyclic
order) is

and for n-cycles α, β, the generalized biadjoint scalar
amplitude is

The generalized biadjoint scattering amplitude is computed by summing
over the critical points of S, for a given choice of kinematics (sabc). Here
Φ(3) is the Hessian matrix for S.
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Initial computations

[CEGM, April 2019]. We solved the scattering equations
directly, choosing kinematics sabc to be large prime numbers,
to obtain m(3)(I6, I6).

Remark: by changing the integrand we also found a
non-planar Feynman diagram (not in m(3)(I6, I6)),

1

s123s345s561s246
.
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New features of m(k≥3)(In, In)

For k = 2, pairwise pole compatibility ⇒ that every Feynman
diagram has exactly n − 3 propagators.

Novel for k ≥ 3:

m(3)(I6, I6) =
1

s123s456t1236t3456︸ ︷︷ ︸
4 compatible here

+
R12,34,56 + R12,56,34

t1234t3456t1256R12,34,56R12,56,34︸ ︷︷ ︸
but 5 here!

+(46 more)

Here

t1234 = s123 + s134 + s124 + s234, R12,34,56 = t1234 + s125 + s126.

Nontrivial linear relations among poles, e.g.

R12,56,34 + R12,34,56 = t1234 + t3456 + t1256.

Rest of the talk will be mostly combinatorial...
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Background and connections 1

[Mizera, June 2017] and [ABHY, Nov 2017]: identification of
m(2)(In, In) with an associahedron in the (k = 2) kinematic
space.

Circa December, 2017 and beyond. After ABHY’s treatment
of kinematic space and pole compatibility on the
associahedron: the story connecting amplitudes to matroid
subdivisions started to become coalesce...
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The Universal Octahedron determines pole compatibility
for ∆2,n (and beyond)

:

Main example: the four tetrahedra now share a common edge connecting
e13 to e24, which is not a root ei − ej ; this is bad!

Octahedron: ∆2,4 = convex hull{ei + ej : 1 ≤ i < j ≤ 4}. All
edges are parallel to roots ei − ej .

Three ways to split the octahedron into two half-pyramids
⇔ { 1

s12
, 1
s23
, 1
s13
}...

But only 1
s12

and 1
s23

appear in m(2)((1234), (1234)).
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What is a matroid subdivision?

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

Fact: A subdivision of ∆k,n is (1) matroidal and (2) compatible with the
cyclic order (12 · · · n), if and only if on any octahedral face it coincides
with one of these two pictures, replacing (1 < 2 < 3 < 4) with any
(a < b < c < d).

The construction using the gray rays of blade arrangements is new
[E,Oct2019] and will be explained.
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First clue: momentum conservation on the octahedron

First clue: Momentum conservation for n = 4 particles says
that
s12 +s13 +s14 = 0, s21 +s23 +s24 = 0, . . . , s12 +s23 +s13 = 0, . . .
This has a nice interpretation on ∆2,4:

s1,2

s1,3

s1,4

s2,3

s2,4

s3,4

So, sum sij over any triangular face and get zero.
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Second clue

For more particles n ≥ 5, momentum conservation translates
to averaging over the facets xj = 1 of the 2nd hypersimplices

∆2,n =

{
x ∈ [0, 1]n :

n∑
i=1

xi = 2

}
.

Second clue: the Mandelstam variables are reflection
invariant; similarly, there is an invariant hyperplane:

(sJ = sJc )⇔

x ∈ ∆2,n :
∑
j∈J

xj = 1 =
∑
j∈Jc

xj

 .

Each such invariant hyperplane divides ∆2,n into a pair of
convex polytopes.

Third clue: namely, the matroid polytopes
∑

j∈J xj ≥ 1 and∑
j∈J xj ≤ 1!

Fourth clue: compatibility for poles of Feynman diagrams...
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Compatible poles

Following usual notation, Mandelstam invariants are sums of
coordinate functions on the kinematic space: sJ =

∑
(i<j)∈J sij

for J a subset of [n], and sJ = sJc by momentum conservation.

Compatibility rule for k = 2 Feynman diagrams:

a product
1

sJ1
sJ2

with subsets J1 6= J2 ⊂ [n] appears in the Feynman

diagram expansion of m(2)(α, α) for some planar order α if
and only if at least one intersection is empty:
J1 ∩ J2, J1 ∩ Jc2 , J

c
1 ∩ J2, J

c
1 ∩ Jc2 .

For example:

m(2)(I5, I5) =
1

s12s123
+

1

s12s34
+

1

s23s123
+

1

s23s234
+

1

s34s234

Now it’s easy to see that summands are in bijection with the
five finest matroid subdivisions of ∆2,5 compatible with the
cyclic order (12345).
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Matroid subdivisions and Feynman diagrams: bijection

x 1
+

x 2
=

1

x
1

+
x
2

+
x
3

=
1

x1
+

x2
+

x3
+

x6
=

1

1

2

3

4

5

6

∆2,6 = {x ∈ [0, 1]6 : x1 + x2 + · · ·+ x6 = 2}

Three compatible hyperplanes ⇔ poles in 1
s12s123s1236

e1 + e2

e2 + e3

e3 + e4e4 + e5

e5 + e6

e6 + e1

⇓ (for ∆k,n all k projection see [Postnikov 2018])

Three 2-splits of ∆2,6:

(1) x1 + x2 = 1 ⇔ s12

(2) x1 + x2 + x3 = 1 ⇔ s123

(3) x1 + x2 + x3 + x6 = 1 ⇔ s1236

Key insight: these 2-splits are pairwise compatible!
E.g. ({1, 2, 3} ∩ {4, 5} = ∅), satisfying compatibility.

Now easy to conclude: given a planar order (12 · · ·n), finest positroidal subdivisions of ∆2,n are

in bijection with Feynman diagrams with legs ordered (12 · · ·n).

In fact, the whole amplitude m(2)(id, id) is a sum over all finest positroidal subdivisions of ∆2,n.

Can the identification be made explicit? ∆k,n = {[0, 1]n :
∑n

i=1 xi = k}?
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Parametrizing m(k)(In, In) for any k with positroidal
subdivisions

Before introducing the planar basis and weakly separated
collections, we’ll need some general results...

Defn. The kinematic space Kk,n is a codimension n subspace

of R(nk),

Kk,n =

{
(s) ∈ R(nk) :

∑
J:J3a

sJ = 0 for each a = 1, . . . , n

}
.
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Hypersimplices, matroid polytopes & subdivisions

A hypersimplex is an integral cross-section of a unit cube:

∆k,n =

{
x ∈ [0, 1]n :

n∑
i=1

xi = k

}
, 1 ≤ k ≤ n − 1.

= convex hull

{
eJ : J ∈

(
[n]

k

)}
,

where eJ = ej1 + · · ·+ ejk and J runs over all k-element
subsets of [n] = {1, . . . , n}.
For example,

∆1,4,∆3,4 are tetrahedra, while ∆2,4 is an
octahedron.

A matroid polytope is... a subpolytope P of (some) ∆k,n such
that every edge of P is parallel to an edge of ∆i ,j :
{ei − ej : i 6= j}.
A matroid subdivision is a decomposition of ∆k,n into matroid
polytopes intersecting only on their common facets.

Nick Early Matroid subdivisions and generalized Feynman diagrams



Hypersimplices, matroid polytopes & subdivisions

A hypersimplex is an integral cross-section of a unit cube:

∆k,n =

{
x ∈ [0, 1]n :

n∑
i=1

xi = k

}
, 1 ≤ k ≤ n − 1.

= convex hull

{
eJ : J ∈

(
[n]

k

)}
,

where eJ = ej1 + · · ·+ ejk and J runs over all k-element
subsets of [n] = {1, . . . , n}.
For example, ∆1,4,∆3,4 are tetrahedra, while ∆2,4 is an
octahedron.

A matroid polytope is...

a subpolytope P of (some) ∆k,n such
that every edge of P is parallel to an edge of ∆i ,j :
{ei − ej : i 6= j}.
A matroid subdivision is a decomposition of ∆k,n into matroid
polytopes intersecting only on their common facets.

Nick Early Matroid subdivisions and generalized Feynman diagrams



Hypersimplices, matroid polytopes & subdivisions

A hypersimplex is an integral cross-section of a unit cube:

∆k,n =

{
x ∈ [0, 1]n :

n∑
i=1

xi = k

}
, 1 ≤ k ≤ n − 1.

= convex hull

{
eJ : J ∈

(
[n]

k

)}
,

where eJ = ej1 + · · ·+ ejk and J runs over all k-element
subsets of [n] = {1, . . . , n}.
For example, ∆1,4,∆3,4 are tetrahedra, while ∆2,4 is an
octahedron.

A matroid polytope is... a subpolytope P of (some) ∆k,n such
that every edge of P is parallel to an edge of ∆i ,j :
{ei − ej : i 6= j}.
A matroid subdivision is a decomposition of ∆k,n into matroid
polytopes intersecting only on their common facets.

Nick Early Matroid subdivisions and generalized Feynman diagrams



2-splits of ∆2,n

Defn/Example. A 2-split (of ∆2,n) is a decomposition
Π1 ∪ Π2 = ∆2,n into matroid polytopes sharing a common
facet Π1 ∩ Π2.

For ∆2,n these look like
∑

j∈J xj = 1 with 2 ≤ |J| ≤ n − 2.
The common facet is a Cartesian product of simplices of
dimensions |J| − 1 and |Jc | − 1.

↪→ 2-splits of ∆2,n are well-understood mathematically, and
familiar from m(2)(In, In).
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The two subdivisions of an octahedron

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

{3, 4}

{2, 4}
{2, 3}

{1, 4}

{1, 3}

{1, 2}

The two nontrivial blade arrangements on the octahedron ∆2,4. Edges of
the octahedron are in the directions ei − ej . Same for the pairs of square
pyramids.
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Compatible 2-splits of ∆2,n

There’s a well-known compatibility rule for 2-splits of the
second hypersimplex ∆2,n...

Maximal cells of the subdivision of ∆2,n induced by the pair of
hyperplanes

∑
i∈J1

xi = 1 and
∑

i∈J2
xi = 1 are matroid

polytopes if and only if at least one intersection is empty:
J1 ∩ J2, J1 ∩ Jc2 , J

c
1 ∩ J2, J

c
1 ∩ Jc2 .

The compatibility rule for pairs of matroid subdivisions of
∆k,n involves checking a condition on each little octahedral
facet of ∆k,n!
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Blades on a hexagon

Recap: for ∆2,n, poles are 2-splits and Feynman diagrams are
superpositions of 2-splits.

New for k ≥ 3 subdivisions:

poles correspond to splittings of
∆k,n into more than 2 chambers!

[E,Oct2019] Introduced a new method to induce splits:

(1,1,1)

(2,1,0) (2,0,1)

(1,2,0)

(0,2,1)
(0,1,2)

(2,0,1)

1-split, 2-split, 3-split: induced by gluing a single blade ((1, 2, 3)) to a
vertex of a hexagon.
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Blades in higher dimensions

e1 -e2

e2 -e3

e3 -e1

Blades ((1, 2, 3)) and ((1, 2, 3, 4)). Left: bends of the function
h(x) = min{x2 + 2x3, x3 + 2x1, x1 + 2x2}. Definition due to my Ph.D.
co-adviser, A. Ocneanu.
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Blade Definition

Definition [Ocneanu]. Fix an integer n ≥ 3. The blade
((1, 2, . . . , n)) is the union of the boundaries of n polyhedral
cones:

((1, 2, . . . , n)) =
n⋃

j=1

∂

∑
i 6=j

ti (ei − ei+1) : ti ≥ 0

 .

Some related notions:

Prop[E,2019]. This is a particular kind of tropical
hypersurface. It is also the (n − 2 skeleton of) the normal fan
to the simplex x1 ≤ · · · ≤ xn ≤ x1 + 1.
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Main constructions

Definition. A blade arrangement is a superposition of several
copies of a blade on a hypersimplex ∆k,n.

Definition. A matroidal blade arrangement is an arrangement
of blades on some of the

(n
k

)
vertices

∑k
j=1 eij of a

hypersimplex such that every maximal cell is matroidal : i.e.,
every edge of every maximal cell is in a root direction ei − ej .

Prop[E, Oct2019]. Any matroid subdivision that is induced by
a matroidal blade arrangement is positroidal: locally it
intersects the octahedron in one of the splits induced by one
of the two (equatorial) squares, x1 + x2 = 1 or x1 + x4 = 1.

Idea of proof: compute explicitly the internal facet
inequalities. They should be of the form
xi + xi+1 + · · ·+ xi+j ≥ aij , where the index sets are cyclic
modulo n.
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Three blades arranged on ∆3,6 (seen projected into the
plane)

Two arrangements of the blade ((1, 2, 3)) on the vertices of a hexagon.
Blade arrangement on left induces the trivial subdivision. Blade
arrangement on right induces a 6-chamber subdivision.

These are projections of matroidal blade arrangements on ∆3,6.
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Towards blade arrangements: weakly separated collections

Definition. (due to Leclerc-Zelevinsky; we rephrase for our

purposes). A pair of k-element subsets J1, J2 ∈
([n]
k

)
is weakly

separated2 if eJ1 − eJ2 avoids (· · ·+ ea − eb + ec − ed + · · · )
for the cyclic pattern a < b < c < d .

Example (k, n) = (3, 6). Then

e134 − e245 = e1 − e2 + e3 − e5,
so {134, 245} is not weakly separated.

2compare in what follows to the classical Steinmann relations
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Main combinatorial result

Thm[E,Oct.2019]. An arrangement of the blade
((1, 2, . . . , n)) on the vertices eJ1 , . . . , eJN ∈ ∆k,n induces a
matroid subdivision of ∆k,n if and only if the collection
{J1, . . . , JN} is weakly separated.

Comments:

This is actually really strong. For generic matroid
subdivisions of ∆k,n for large k and n we would have a large
computational task to determine their compatibility.

Can our construction can be used to leverage larger
computations for generic matroidal subdivisions?

We conclude with some illustrations...

Nick Early Matroid subdivisions and generalized Feynman diagrams



Main combinatorial result

Thm[E,Oct.2019]. An arrangement of the blade
((1, 2, . . . , n)) on the vertices eJ1 , . . . , eJN ∈ ∆k,n induces a
matroid subdivision of ∆k,n if and only if the collection
{J1, . . . , JN} is weakly separated.

Comments: This is actually really strong. For generic matroid
subdivisions of ∆k,n for large k and n we would have a large
computational task to determine their compatibility.

Can our construction can be used to leverage larger
computations for generic matroidal subdivisions?

We conclude with some illustrations...

Nick Early Matroid subdivisions and generalized Feynman diagrams



Numbers of finest positroidal subdivisions ∆k,n induced by
blade arrangements

The table below uses weakly separated collections to enumerate
subsets of the set of finest positroidal subdivisions of ∆k,n.
Prop. These map to arrays of Feynman diagrams from [CGUZ].
Notably,

all generalized Feynman diagrams here have exactly
(k − 1)(n − k − 1) poles. This is not true for positroidal
subdivisions in general!

n \ k 2 3 4 5 6 7 8 9 10
4 2
5 5 5
6 14 34 14
7 42 259 259 42
8 132 2136 5470 2136 132
9 429 18600 122361 122361 18600 429

10 1430 168565 2889186 7589732 2889186 168565 1430
11 4862 1574298 71084299 71084299 1574298 4862
12 16796 15051702 15051702 16796
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Blade arrangement on ∆3,7

{1, 2, 4}
{2, 4, 7} {1, 2, 3}

{1, 2, 7}

{2, 3, 4}

{2, 6, 7}

{3, 4, 7}

{4, 5, 7}

{4, 6, 7}

{1, 6, 7}

{5, 6, 7}

{3, 4, 5}

{4, 5, 6}

Embedding of the blade arrangement {124, 247, 267, 347, 457, 467} on
the 1-skeleton of ∆3,7.
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Blade arrangements induce collections of Feynman
diagrams

1

2

3

5

6

4

1

2

3

5

4

1

2

3

4

7

6

7

3

4

1

5 6

7
2

3

4 5 6

7 1

2 4 5 6

7
1

2 3 5 6

7

∂1(C) ∂2(C) ∂3(C) ∂4(C)

∂5(C) ∂6(C) ∂7(C)

The seven boundaries of the blades labeled by the weakly separated

collection {124, 247, 267, 347, 457, 467}. Each tree encodes

a matroid

subdivision of a face of ∆3,7, i.e., a copy of ∆2,6. The boundary operator

can be defined directly on sets of k-tuples (not obvious!).
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Blades induce positroidal multi-splits

An essential question: which matroid subdivisions are induced
by matroidal blade arrangements?

Denote
ej1,...,jk = ej1 + · · ·+ ejk . Put ((1, 2, . . . , n))eJ for the
translation of the blade to the vertex eJ .

Theorem[E, Oct2019] The blade ((1, 2, . . . , n))eJ induces a
multi-split positroidal subdivision of ∆k,n, where the maximal
cells are nested matroids. The number of maximal cells in the
subdivision equals the number of cyclically consecutive
intervals in the labels in J.
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Towards an all-k planar basis

Let V n
0 ⊂ Rn be the hyperplane x1 + · · ·+ xn = 0.

Defn. Let h : V n
0 → R be the piece-wise linear function

h(x) = min{L1(x), . . . , Ln(x)}, where

Lj = xj+1 + 2xj+2 + · · · (n − 1)xj−1.

Prop.[E,Oct2019].

The blade ((1, 2, . . . , n)) equals the bend locus
of the function h(x). That is,

((1, 2, . . . , n)) = {x ∈ V n
0 : (Li (x) = Lj(x)) ≤ L`(x) for all ` 6= i , j} .
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Height functions

Defn.[E,Dec 2019]. At each vertex eJ(=
∑

j∈J ej) ∈ ∆k,n, we’ll
glue a copy of ((1, 2, . . . , n)) and define a linear form on Kk,n:

set

ρJ(x) = h(x − eJ), and ηJ = −1

n

∑
eI∈∆k,n

ρJ(eI )sI .

[E, Dec2019]. The set {ηJ : J is nonfrozen} is a basis3, the planar
basis, for the space of linear forms on the kinematic space Kk,n.
These objects ηJ have some useful properties which we discuss
now...

3frozen elements are zero: ηi,i+1,...,i+(k−1) =0
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Why linear forms ηJ?

Warm up, k = 2. On the kinematic space K2,6

η24 =
1

4
(3s12 + 2s13 + s14 + s23 + 3s34)

≡ s34

η25 = s34 + s35 + s45

η23 =
1

4
(2s12 + s13 + 4s14 + 3s24 + 2s34)

≡ 0.

Of course this all works beautifully for k ≥ 3: e.g., (3,6):

η135 =
1

6
(3s123 + 2s124 + s125 + 6s126 + · · ·+ s356 + 6s456)

≡ s123 + s126 + s136 + s234 + s235 + s236.

This is one of the new poles (“R16,23,45”) in m(3)(I6, I6)!
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Inverse transformation

Nice “cubical” rule for expanding sJ as a sum of ηJ ’s (k = 2
case familiar):

s25 = −(η14 − η15 − η24 + η25).

There is a generalization to k ≥ 3:

−s235 = η235 − η234 − η135 + η134

−s246 = η246 − η146 − η236 + η136 − η245 + η145 + η235 − η135.
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Planar basis: explicit inversion formula

[E,Dec2019] Given a nonfrozen vertex eJ ∈ ∆k,n with t(≥ 2)
cyclic intervals, with cyclic initial points say j1, . . . , jt , consider
the t-dimensional cube

CJ =
{
JL = {j1 − `1, . . . , jt − `t} : L = (`1, . . . , `t) ∈ {0, 1}t

}
.

Then the following “cubical” relation among linear functionals

holds identically on R(nk), as well as on the subspace Kk,n:∑
L∈CJ

(−1)L·LηJL = −sJ ,

where L · L is the number of 1’s in the 0/1 vector L.
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m(3)(I6, I6) in the planar basis

In the planar basis, m(3)(I6, I6) has the expression

m(3)(I6, I6) =
1

η125η134η135η145
+

1

η124η125η134η145

+
1

η136η145η146 (−η135 + η136 + η145 + η235)

+
η136 + η145 + η235

η135η136η145η235 (−η135 + η136 + η145 + η235)
+ 44 more.
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Thank you!

1 i
-1

-i

2

1
3 4

q-plate in dimension 3
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