

These cells are related by T-duality map:

$$\int \overline{t(l \pm \hat{\sigma}(i) = \sigma(i-2)}$$
Conjecture: The collection of cells {S_r} triangulates $\mathcal{M}_{n,k}^{(4)}$
iff the collection if S_{\hat{\sigma}} triangulates $\mathcal{A}_{n,k}^{(4)}$.
Open question: How to find all possible triangulations
of $\mathcal{M}_{n,k}^{(4)} / \mathcal{M}_{n,k}^{(4)} = \mathbb{Z}$
We have an additional space we want to study:
 $G_{\star}(k+1,n) \subset \frac{ident!k_{\star}}{M} = G_{\star}(k+1,n) \xrightarrow{T-duality} G_{\star}(kn)$
 $\int \mathcal{I}_{n,k} = \int \overline{\mathcal{I}_{n,k}} = \int \overline{\mathcal{$

Hypersimplex is the image of $G_{+}(k+1,n)$ through the <u>moment map</u> p_{\perp} : $\mu(c) = \frac{\sum_{I \in {\binom{InJ}{k}}}^{I} |P_{I}(c)|^{2} e_{I}}{\sum_{I \in {\binom{InJ}{k}}}^{I} |P_{I}(c)|^{2}}$

where [n] = [1, ?,.., n], e_I = e_{i,+..+e_{ik}} and p_I(c) is a Plücker coordinates for matrix c.

Exemple: k=1, n=4 $\Delta_{2,4} = conv \left\{ \begin{array}{c} (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,10,1), (0,0,1) \\ \chi_{1,2}, \chi_{1,3}, \chi_{1,4}, \chi_{23}, \chi_{23}, \chi_{24}, \chi_{24}, \chi_{24} \end{array} \right\}$ 1217 13,42 2,43 Dimension of Ak+1, n is n-1 since x1+X2+..+Xn=k. · We consider positroid dissections of the hypersimplex: take any positroid cell So of G+ (k+1,n) for which $\mu(S_{\Theta})$ has dimension n-1. We call such images positionid polytopes TG Example: take $S_{\overline{c}} \in G_{1}(2,4)$ such that $P_{\{1,2\}}(c) = 0$. Definition: A positroid dissection of $\Delta_{k+1,n}$ is a collection of cells I Sof such that for amplituhedron Ank • $\operatorname{olim} T_{p}^{1} = n-1$ • $\dim T_{\overline{b}} = n-1$ • $\dim \overline{f}_{\overline{c}}(S_{\overline{b}}) = 2k$ • $\overline{f}_{\overline{b}} \cap \overline{f}_{\overline{b}}(S_{\overline{b}}) = \frac{1}{2k}$ • $\overline{f}_{\overline{b}}(S_{\overline{b}}) = \frac{1}{2k}$ • $\overline{\Phi}_{z}(S_{e}) \cap \overline{\Phi}_{z}(S_{e}) = \phi$ $U_{\rm F} \overline{T_{\rm F}} = \Delta_{\rm kH, n}$ $\cdot \bigcup \overline{\Phi_z}(S_{\sigma}) = \mathcal{A}_{n_1 4}^{(2)}$

If additionally we have that
$$\mu$$
 is injective
for all So then we call it a positroid triangulation
Claim: The collection $\{S_{\sigma}\}_{gives}^{in} G_{+}(k+1,n)$
of $\Delta_{k+1,n}(\mathcal{M}_{n,k}^{(n)})$ if f the collection $\{S_{\sigma}\}_{in}$ in $G_{+}(k,n)$ gives
a triangulation (dissection) of $\mathcal{M}_{n,k}$, where
 $\widehat{\sigma}(i) = \overline{\sigma}(i-1)$

First example of triangulation which is not a good triang:

$$\Delta_{3,6}$$
 or $\mathcal{A}_{6,2}^{(2)}$.
First example of good triangulation which is not regular:
 $\Delta_{3,9}$ or $\mathcal{A}_{9,2}^{(2)}$ or $\Delta_{4,8}$ or $\mathcal{A}_{8,3}^{(2)}$.
Relation to positive tropical Grepmannian.

-toke a real-valued function:

$$\{I\} \rightarrow P_{I}$$
, $I \in \binom{[n]}{k}$

- consider points
$$(e_{I}, P_{I}) \in A_{k,n} \times \mathbb{R}$$
 and take
their convex hull

Claim: A collection (So) of positroid cells of Gyle, n)
gives a regular triangulation of Akin iff this triangulation
comes from a height function with
$$P=(P_F)$$
 being
a positive tropical Plücker vector from a maximal come
of Tropy G(kin).

Corollary: The number of regular positivoidal triangulations of the hypersimplex Akin equals the number of meximal cones in the positive tropical GreBmannian Tropy G(kin).