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Introduction

Feynman integrals are interesting for their connection to physics
and also mathematics (number-theory and algebraic-geometry).
Mathematical tools like twistor space, cluster algebras,
polylogarithms, symbols, coproducts, cosmic Galois group,
homology, have been useful and there are certainly more
connections to be made.
Quantum Field Theories can be pretty complicated, but a very
simple one I will be mostly focusing on, is the N = 4
supersymmetric gauge theory. A lot of what I’ll be saying applies
in other cases as well.



Feynman integrals

Starting from any oriented graph G (in fact any multigraph) we
can build an integral by multiplying terms associated to edges and
vertices. To each edge e ∈ G we associate a term 1

p2
e−m2

e
called

propagator, where me is called mass and pe is called momentum.
The square p2

e is calculated with a quadratic form with signature
(1, d − 1) (the Minkowski metric).
Momentum is conserved at vertices. Usually there are
contributions arising from vertices and the propagators may also
have a nontrivial numerator (depending on the type of particle).
The generic form of a Feynman integral is∫

(ddk)L N∏
e∈G(p2

e − m2
e)
, (1)

where the integral is over the momenta which satisfy the
conservation relations.



Example: box integral
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Figure: The box integral.

This graph has associated the following integral (we set all the
masses to zero)

I□ =

∫
d4k 1

k2(k + p2)2(k + p2 + p3)2(k − p1)2 . (2)



Polylogarithms

Definition (leading singularity, Cachazo)
Given an integral, one can compute its leading singularities by
taking residues in as many denominators as possible. If the
residues are all ±1, then the integral is well-normalized.

The numerator factor is essential for the integral to be
well-normalized.
Definition (multiple polylogarithms)
For positive integers n1, . . . ,nk a multiple polylogarithm is the
analytic continuation of the power series

Lin1,...,np(x1, . . . , xp) =
∑

0<k1<···<kp

xk1
1 · · · xkp

p

kn1
1 · · · knp

p
. (3)



Polylogarithms

In some cases, there are more integration variables than
propagators. After computing the residues in all the propagators,
one obtains a Jacobian factor which can itself be singular so we can
compute extra residues. The process stops when there are no more
residues or there is no dependence on the integration variables k.

Conjecture
Well-normalized Feynman integrals can be expressed as a linear
combination of (multiple) polylogarithms with rational coefficients.
The arguments of the multiple polylogarithms are algebraic
functions of the external momenta.



Dual conformal symmetry
The box integral can be written in dual space (Broadhurst) as

I□ =

∫ d4x0
x2

10x2
20x2

30x2
40
, (4)

where xij = xi − xj and x10 = k, x20 = k + p2, x30 = k + p2 + p3,
x40 = k − p1.
Definition (conformal group)
The conformal group is the group of space-time coordinate
transformations which preserve the metric upto a multiplicative
factor.
The box integral has a (dual) conformal symmetry in the dual
variables x.
Theorem ((Drummond, Henn, Korchemsky, Sokatchev),
(Arkani-Hamed, Bourjaily, Cachazo, Trnka))
The N = 4 planar integrands have a dual superconformal
symmetry.



Momentum twistors
A dual vector x ∈ R4 can be complexified and its components
placed in a 2 × 2 matrix

X =

(
X11 X12
X21 X22

)
. (5)

We may use the quadratic form detX = X11X22 − X12X21 as the
Minkowski metric.1 This quadratic form can be polarized to a
scalar product

(X,Y) =
1
2 det(X) tr(X−1Y) =

1
2 det(Y) tr(XY−1). (6)

There is an “inversion” conformal transformation X → X−1. This
transformation together with translation X → X + A and Lorentz
transformations X → BXC with detBdetC = 1 generates the
dual conformal group acting as X → (AX + B)(CX + D)−1 where(

A B
C D

)
∈ PGL(4). (7)

1If the components Xij ∈ R, then the metric has split signature (2, 2).



Grassmannian

Consider the space of 4 × 2 matrices
(U

V
)
, modulo the right action

by an invertible 2 × 2 matrix. The conformal group PGL(4) acts
linearly on this space, with X = UV−1, when V is invertible. This
space is just the Grassmannian G(2, 4). Upon projectivisation we
obtain G(1, 3), the space of projective lines in P3. This P3 is called
dual twistor space. It was introduced by Hodges, following similar
constructions of Penrose for usual (not dual!) conformal symmetry.

dual space twistor space
point X line LX

(X,Y) = 0 intersecting lines LX, LY

Table: Correspondence



Box integral leading singularities
To the four external dual points correspond four lines, which we
take to be skew and such that they don’t all lie on a quadric.
Given these four lines, we want to find the lines which intersect all
of them (leading singularity locus).

Figure: Quadric with two rulings.



Quadrics

Properties of non-singular quadrics in P3:
1. Three skew lines determine a non-singular quadric Q.
2. Each quadric is rules by two families of lines.
3. Each line in one family intersects all the lines in the other.
4. Through each point on Q passes one line from the first family

and one line from the other.
5. A non-singular quadric in P3 is the image of the Segre map

σ : P1 × P1 → P3, (8)
([s0 : s1], [t0 : t1]) 7→ (s0t0, s0t1, s1t0, s1t1). (9)

Equivalently, the quadric is the locus in P3 with homogeneous
coordinates [x0 : x1 : x2 : x3] where x0x3 = x1x2.



Leading singularities of the box

We construct the leading singularity locus as follows (Hodges):
1. From three of the lines L1, L2 and L3 construct a quadric Q.

These lines are in one of the rulings of Q
2. The intersection Q ∩ L4 is two points (Bézout’s theorem)
3. Through each of these points passes a line in the ruling

opposite to the one determined by L1, L2 and L3. Hence, it
intersects all of them.

There are two transversals ℓ1 and ℓ2 to the lines L1, L2, L3 and
L4. On ℓ1 and ℓ2 there are four points of intersection so we can
form two cross-ratios z1, z2. The result for the normalized2 box
integral is

NI□ = 2Li2(z1)− 2Li2(z2)− log(z1z2) log
1 − z1
1 − z2

. (10)

2The numerator vanishes when the lines Li lie on a single quadric.



Two-loop train-track

Consider the two-loop train-track integral (Caron-Huot, Larsen).
What is the leading singularity in this case? It turns out it is a
genus one curve. After taking all the possible residues we are left
with a holomorphic one-form so no further residues are possible.
Q: How to normalize the integral?
A: One could think of normalizing the integral so that the integral
of this holomorphic one-form along a homology cycle is one. But
which homology cycle?
Q: What other more complicated geometries appear?
A: (Possibly singular) Calabi-Yau manifolds.



Twistor construction for the two-loop train-track

What is the leading singularity locus (and the holomorphic
one-form) in twistor language? We can build a quadric Ql from the
left three lines and a quadric Qr from the right three lines. These
quadrics intersect in a curve C = Ql ∩ Qr. Given a point p ∈ C,
through p passes a line intersecting the three defining lines of Ql
and a line intersecting the three defining lines of Qr.
The holomorphic one-form can be found by taking two Poincaré
residues

ωC = ResQl ResQr
ωP3

QlQr
, (11)

where ωP3 = x0dx1 ∧ dx2 ∧ dx3 − x1dx0dx2dx3 + · · · is the
PGL(4)-invariant weight four form on P3.



Geometry of the leading singularity genus one curve
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Comparing genus one curves

The curve C can be characterized by the complex structure
modulus τ or by the j-invariant. The computation of τ involves
integrals, while j can be defined algebraically.
The curve C is the intersection of a pencil of quadrics
µ0Ql + µ1Qr. A member of this pencil becomes singular at four
points.3 From these four points in P1 with coordinates [µ0 : µ1] we
can build a cross-ratio λ. Then the j-invariant is

j = 256(λ
2 − λ+ 1)3

λ2(λ− 1)2 . (12)

The j-invariant can also be calculated by doing the integrals using
Feynman parametrization. This calculation looks very different but
the j-invariants agree.

3A quadric in P3 can be thought as a 4 × 4 matrix which becomes singular
when its determinant vanishes. This determinant is of degree four in λ0, λ1.



Three-loop train-track
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Consider next the three-loop train-track diagram. Its leading
singularity locus has been studied by Bourjaily, He, McLeod, von
Hippel, Wilhelm by some laborious procedure (using Feynman
parametrization and involving computer calculations using
Macaulay2).
We can instead do this analysis in momentum twistor space.



Three-loop train-track twistor geometry
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Figure: K3 twistor geometry.



Three-loop train-track twistor geometry

Here are the steps of the geometric construction:
1. A point on L4 and another on L8 define a line LB.
2. The lines L1, L2 and L3 determine a quadric Ql.
3. The lines L5, L6 and L7 determine a quadric Qr.
4. The line LB generically intersects4 Ql in two points and Qr in

two points (Bézout).
5. The condition that the line LB is tangent to Ql is an equation

of bidegree 2, 2 in P1 × P1 (which is a genus one curve).
6. The K3 surface is then a branched cover over P1 × P1.

4We take the line LB not to be contained in Ql or Qr.



Leading singularity as a branched cover

The leading singularity locus is a four-fold cover over a generic
point in P1 × P1 (two intersections with Ql and two intersections
with Qr). It is a double cover over the genus one curve Cl
(corresponding to a tangent to Ql and two intersections with Qr).
It is also a double cover over Cr (tangent to Qr and two
intersections with Ql). Finally, there is no branching over the eight
intersection points of Cl ∩ Cr.
This is an analog of the construction of a genus one curve as a
double cover branched over four points on P1. From these four
points we can compute a cross-ratio and a j-invariant. What is the
analog for K3?



Euler characteristic

We use surgery. We have
▶ four copies of the points P1 × P1 − Cl ∪ Cr
▶ two copies of the points Cl ∪ Cr − Cl ∩ Cl
▶ one copy of the points Cl ∩ Cr

We also know that
▶ χ(P1 × P1) = χ(P1)2.
▶ χ(P1) = 2 since P1 is a two-sphere.
▶ χ(Cl) = χ(Cr) = 0 since Cl and Cr are tori.
▶ χ(pt) = 1.
▶ inclusion-exclusion χ(Cl ∪ Cr) = χ(Cl) + χ(Cr)− χ(Cl ∩ Cr).



Euler characteristic

Then,

χ(S) = 4(χ(P1 × P1)− χ(Cl ∪ Cr))+

2(χ(Cl ∪ Cr)− χ(Cl ∩ Cr)) + χ(Cl ∩ Cr) =

4χ(P1 × P1)− 2χ(Cl ∪ Cr)− χ(Cl ∩ Cr) =

4 × 2 × 2 − 2 × (−8)− 8 = 24. (13)

The Hodge diamond of K3 is

1
0 0

1 20 1
0 0

1

(14)



Holomorphic two-form

The holomorphic two-form is

ωK3 =
ωP1ωP1√
Cl
√

Cr
. (15)

The measure ωP1ωP1 has weight 2, 2 while Cl and Cr have
bidegree 2, 2 each. More accurately, we introduce new coordinates
yl and yr of bidegree 1, 1 with properties y2

l = Cl and y2
r = Cr so

the holomorphic two-form is

ωK3 =
ωP1ωP1

ylyr
. (16)



Embedding in toric varieties

We can define K3 as a codimension one algebraic variety in a space
defined by the equivalences

(a1, a2︸ ︷︷ ︸
P1

, b1, b2︸ ︷︷ ︸
P1

, y1, y2) ∼ (sa1, sa2, tb1, tb2, sty1, sty2). (17)

This is a toric variety we denote by

P
( 1 1 0 0 1 1

0 0 1 1 1 1
)

(18)

Then, in this manifold we impose two equations of degrees 2, 2
each. The resulting manifold is denoted by

P
( 1 1 0 0 1 1

0 0 1 1 1 1
) [

2 2
2 2

]
(19)



Toric CICY

The general framework for doing these calculations is that of toric
CICY’s, as formulated by Batyrev & Borisov.
▶ From the data of the embedding space build a (reflexive)

lattice polytope ∆∗ with dual ∆.
▶ The vertices of ∆∗ can be partitioned in some way (nef

partition) and ∆∗ = conv(∇1, . . . ,∇r).
▶ One can build dual lattice polytopes ∆i.
▶ The points of ∆i are the Newton polytopes for the equations

defining the embedding.
Mirror symmetry is built in.5 What role does mirror symmetry
play? (Some studies by Bloch, Kerr, Vanhove for the case of
sunrise integral).

5Swap ∆i with ∇i and convex hull with Minkowski sum.



The three-fold

One can also build the three-fold (corresponding to a four-loop
train-track) as a toric CICY.

P
( 1 1 0 0 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1

) 
2 0 1
2 0 1
0 2 1
0 2 1


12,28

−32

(20)

We have h11 = 12, h2,1 = 28 and χ = −32. This result was
obtained using the nef.x computer program by Kreutzer et al.
The complete intersections become high codimension which makes
them hard to analyze.



Genus one in superspace

So far, we have not made use of the dual super-conformal
symmetry. In this case the dual super-conformal symmetry is
PGL(4|4) and has a simple action on the super-twistor space P3|4

with homogeneous coordinates

Z = [Z0 : Z1 : Z2 : Z3 | χ1 : χ2 : χ3 : χ4], (21)

where the χi coordinates are nilpotent χ2
i = 0, χiχj = −χjχi.

The space P3|4 is special in that it has a weight zero 3|4-form

ωP3|4 = ωP3dχ1 · · · dχ4, (22)

where dχi has weight −1. This means that the 3|4-form ωP3|4 is
canonically normalized. These spaces are sometimes called
super-Calabi-Yau.



Supersymmetric Dirac delta functions

We define6

δ4|4(Z) = δ(Z0) · · · δ(Z3)χ1 · · ·χ4. (23)

Then the version on P3|4 is

δ
3|4
P3|4(Z;Y) =

∫
P1

ωP1(α)

α0α1
δ4|4(α0Z + α1Y). (24)

In the same way we can define δ
1|4
P3|4(L1;L2) of two lines to intersect

and δ
2|4
P3|4(L;Z) of the point Z to lie on the line L. Finally we can

define δ
1|8
P3|4(Z;Ql) of the point Z to lie on the superquadric Ql.

6Such supersymmetric delta functions were considered by Mason & Skinner
in the context of perturbation theory in twistor space. We could take δ(Zi) to
be (0, 1)-currents in the sense of de Rham.



SUSY analogs of Poincaré residues

The expression for the holomorphic one-form is now characterized
by the equality7∫

C
ω

0|12
C (Z)f(Z) =

∫
ωP3|4(Z)δ

1|8
P3|4(Z;Ql)δ

1|8
P3|4(Z;Qr)f(Z), (25)

for all f.
Hence, it is possible to define a holomorphic one-form ωC of
degree 12 in the odd variables of the external points. This form is
canonically normalized, but its coefficient is nilpotent! The degree
12 corresponds to a sector of the ten-point amplitude called
N3MHV.

7There is no need to specify a contour if we take f, δ1|8
P3|4 to be (0, 1)-forms.



Disentangle even and odd

In ω
0|12
C , the dependence on Z is entangled with that on the odd

variables χ in combinations of weight 0|4 called R-invariants. Can
they be disentangled? Use the idea of Lagrange interpolation
which appeared in (Kosower, Roiban, CV).



The End


