Intrinsic k_T and low mass DY production

With Parton Branching method

Mikel Mendizabal on behalf of Parton Branching group REF 2020

<u>PB group</u>: A. Bermudez¹, P.L.S. Connor¹, D. Dominguez¹, L.I. Estevez¹, F. Hautmann^{2,3}, H. Jung¹, J. Lidrych¹, A. Lelek³, M. Mendizabal¹, M. Schmitz¹, S. Taheri¹, Q. Wang^{1,4}, H. Yang^{1,4}, T. Wening¹, R. Zlebcik¹

¹ Deutsches Elektronen-Synchrotron,

² RAL and Unversity of Oxford,

³ Universiteit Antwerpen,

⁴ School of Physics, Peking University

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Heading Agenda

- Introduction
- PB-TMDs and Drell-Yan production at NLO
- Low mass Drell-Yan production
- Conclusion

Introduction

Low mass DY issues

• For proton-proton collisions the collinear factorization theorem is commonly used

 $\sigma_h \sim \int f_1 \otimes f_2 \otimes \sigma_{partonic}$

Transverse momentum of the intial parton is neglected

- Many observables are described using collinear factorization
- However, to describe the Z boson p_T spectrum at $p_T < Q$ soft gluon resummation to all orders is needed

DGLAP evolution

- When $z \sim 1$ the emission is not resolvable $\rightarrow z_m$ is introduced
- DGLAP does not contain transverse momentum

PB-TMDs evolution

• TMD evolution with PB, where *A* is the TMD:

$$A_{a}(x,\mu^{2},k_{\perp}) = A(x,\mu_{0}^{2},k_{\perp})\Delta_{a}(\mu^{2}) + \int \frac{d^{2}\mu_{1}}{\pi\mu_{1}^{2}}\Theta(\mu^{2}-\mu_{1}^{2})\Theta(\mu_{1}^{2}-\mu_{0}^{2})\frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu_{1}^{2})} \times \sum_{b}\int_{x}^{1} dz_{1}\Theta(\underline{z_{m}}(\mu_{1})-1)P_{ab}^{R}(\mu_{1}^{2},\underline{z_{1}})A_{b}\left(\frac{x}{z_{1}},\mu_{0}^{2},k_{\perp}\right)\Delta_{b}(\mu_{1}^{2}) + \cdots$$

- At every splitting the kinematics of the emitted and propagating partons are computed
- The TMD factorization theorem

$$\sigma_{h} = \sum_{q\bar{q}} \int d^{2}k_{T_{1}} d^{2}k_{T_{2}} \int dx_{1} dx_{2} A_{q}(x_{1}, k_{T_{1}}, \mu^{2}) A_{\bar{q}}(x_{2}, k_{T_{2}}, \mu^{2}) \sigma_{q\bar{q}}(x_{1}, x_{2}, k_{T_{2}}, \mu^{2})$$

Angular ordering

- The evolution in PB formalism applies angular ordering
- It enters the evolution as:

$$q_{\perp,c}^2 = (1-z)^2 {\mu'}^2$$
 $z_m = 1 - \left(\frac{q_0}{\mu'}\right)$ $\alpha_s((1-z)^2 \mu')$

• The radiation scale is proportional to the angle of the momentum of the radiated particle respect of the particle beam

$$\frac{q_{\perp,i}}{1-z_i} = |k_{i-1}|\sin\theta_i = \mu'$$

• The first radiation is the one with smallest angle

$$\theta_i < \theta_{i+1}$$

 q_0 : minimum transverse momentum of the emitted parton

DESY. | Intrinsic kt and low mass DY production | Mikel Mendizabal, 08.12.2020

PB-TMDs and DY production at NLO

Soft gluon resumation effects

- As mentioned before collinear factorization needs soft gluon resumantion
- The matrix element is computed using MC@NLO
- DY lepton-pair transverse momentum:
 - MC@NLO at a partonic level using Herwig6 substraction terms
 - MC@NLO + PB-TMDs
- At LHC energies soft gluon resummation impacts the low $\ensuremath{p_{\mathsf{T}}}$ region

Eur.Phys.J.C 80 (2020) 7, 598

Soft gluon resumation effects at low mass DY

- To see the effect of soft gluon resumation at low mass DY we follow the same procedure
- At low mass DY the largest contribution comes from the soft gluon resummation, both at large and low $p_{\rm T}$
- This effect allows studies of contribution from soft gluon
 emission

Intrinsic k_T of initial state partons

In PB formalism

• The intrinsic k_T of the intial state parton is generated from a gaussian distribution

$$A_{0,a}(x, k_{T_0}, \mu_0) = f_{0,a}(x, \mu_0) e^{-\frac{k_{T_0}^2}{\sigma^2}}$$

2

• The parameter to study is q_s , the width of the distribution:

$$\sigma = \frac{q_s}{\sqrt{2}}$$

- Small values of q_s makes larger TMDs at low k_T region
 - PB-NLO-HERAI+II-2018-Set2-q0 with $q_s = 0.5$ GeV
 - PB-NLO-2018-Set2 with $q_s = 0.25$ GeV
 - PB-NLO-2018-Set2 with q_s = 0.00001 GeV

Lepton pair mass

 Theoretical predictons from PB-TMDs and NLO matrix elements with MC@NLO matching are compared to measurements for different center of mass energies:

• We find good description of the lepton pair mass spectrum

Where the band represents the uncertainties

Lepton pair pT

• The description of the data is good, with a $\frac{\chi^2}{ndf} = 1.04(PHENIX), 1.27(R209), 1.07(NuSea)$

• For this set-up (Set2) $q_s = 0.5 \text{ GeV}$

How sensitive is PB-TMDs to intrinsic $k_{\rm T}\,?$

- We plot $\frac{\chi^2}{ndf}$ as a function of q_s for different center of mass energies
- Lower mass DY measurements show a larger sensitivity to the choice of the q_s
- An overall minumim is observed for $q_s \in (0.3 0.4)$ GeV
- For Set2 $q_s = 0.5 \text{GeV}$

Are we really sensitive to intrinsic KT?

- Predictions for different values of q_s for NuSea measurements
 - MCatNLO PB-NLO-2018-Set2 with $q_s = 0.5$ GeV
 - MCatNLO PB-NLO-2018-Set2 with $q_s = 0.25$ GeV
 - MCatNLO PB-NLO-2018-Set2 with $q_s = 0.00001$ GeV
- The set-up shows a small sensitivity for different values of q_s
- The low sensitivity comes from the TMD evolution (next slide)

NuSea(\sqrt{s} = 38.8 GeV) 4.2 < $m_{\mu^+\mu^-}$ < 5.2GeV

Why are we not as sensitive as expected?

• Reminder: Angular ordering enters the evolution as

 $q_{\perp,c}^2 = (1-z)^2 {\mu'}^2$

$$z_m = 1 - \left(\frac{q_0}{\mu'}\right)$$

 $\alpha_s\big((1-z)^2\mu'\big)$

• In our current set-up $q_0 = 0.01$ is fixed $\rightarrow z_m \sim 1$. At large z_m values:

PB-TMD ev. converges to DGLAP ev.

 In this way non-perturvative emissions are treated in a similar way as perturvative ones, simulating nonperturvative effects

Summary and outlook

Summary

 We investigated the p_T spectra of DY lepton-pair production at small DY masses and low center of mass energies

- Measurements at low center of mass energies are well described within PB formalism, with $\frac{\chi^2}{ndf} \sim 1$
- We determined an optimal value for $q_s \in (0.3 0.4)$ GeV
- However, a lack of sensitivity is observed to the intrinsic k_T , due to the large value of z_m

Summary and outlook

• A large value of $z_m \sim 1$ reduces the contributions from non-perturvative effects. Making PB formalism safe to use at different center of mass energies with the same configuration

Thank you

Tune of intrinsic kT with pythia8

• We use NuSea to tune the intrinsic kT within Pythia8

 $\frac{\chi^2}{ndf} = 0.9$

- However, at 8 TeV we see that the tune does not work for the low p_T
- The same effect is observed a tune of the intrinsic kT at 8 TeV does not work for lower mass DY processes
- This shows that finding a right tune for different DY mass processes is non trivial

