

QCD aspects in V+jets measurements at the LHC

Resummation, Evolution, Factorization 2020 Virtual Conference, 08/12/2020

Vieri Candelise (University of Trieste & INFN Trieste)

Outline

• V+Jets Physics: Phenomenology at the LHC

Recent LHC results in three sets:

- Recent results on V+Jets measurements
 Tuning & PS in V+Jets
- 3 LHC-EW: Jets & bosons

Summary, conclusions and perspectives

Phenomenology of W and Z bosons at LHC

Phenomenology of W and Z bosons at LHC

LHC is the most efficient V+Jet Factory of the world!

it's the perfect experimental ground field to test the SMI

Jets are the experimental signatures of quarks and gluons, QCD V bosons are the expression of the EWK interactions...

- **x** QCD modelling plays a prime role: impact of the initial state (PDF, resummation, α_S , scales)
- ▼ Open phenomenology: V+jets/HF, multiboson interactions, EW production (VBF/VBS)...
- × Precision tests of the SM with W/Z: quark sea, hadronization effects, constrain PDFs
- X Data-driven way to "tune" our simulation and improve perturbative calculations

V+Jets physics at the LHC is a factory of scientific results... a lot of amazing publications are available!

what comes next is my *personal overview* of the *most recent V+Jets results at 13 TeV focusing on QCD aspects* (especially observables sensitive to resummation, hadronization) from ATLAS and CMS

enjoy!

you can have a look at the full Standard Model gallery of results from the two experiments here:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html

Selected Results

part 1

W and Z plus jets

CMS® 13 TeN Associated production of Z and jets

pp collisions @13 TeV, 2.2 fb⁻¹ data (2015)

- Correction for detector resolution (unfolding)
- Dominant background: tt (data-driven estimation)
- Other backgrounds: from MC
- Differential cross-section as a function of Z boson p_T, jet p_T and η, pTbalance, jet-Z balance (JZB)

	Jets
Leptons	anti- $kT(R=0.4)$
$p_T(l) > 20 \text{ GeV}$	m(i) > 20 C eV
n < 2.4	$p_T(j) > 50 \text{ GeV}$
	$ \eta < 2.4$
$M_{ll} = 91 \pm 20 \text{ GeV}$	$\Delta R(jet, l) > 0.4$

Eur. Phys. J. C 78 (2018) 965

рт **(Z)**

lead jet p_T

observables

8

H_T

Imbalance due to:

- 1. Activity in forward region (dominant).
- 2. Gluon radiation in central region.

NLO MG5_aMC: good agreement with data.

LO MG5_aMC + Geneva: discrepancies with data. LO accuracy for 2 partons in final state.

Observables

$$p_T^{bal} = |p_T(Z) + \sum_{jets} p_T(j_i)|$$
$$JZB = |\sum_{jets} p_T(j_i)| - |p_T(Z)|$$

CMS® 13 TeN Associated production of W and jets

pp collisions @13 TeV, 2.2 fb⁻¹ data (2015)

Phys. Rev. D 96 (2017) 072005

- Detector resolution corrected (unfolding)
- Dominant background: tt production (data-driven estimation)
- Other backgrounds: MC and data driven (QCD)
- Differential cross-section as a function of N_{jets}, jet p_T and η, jets H_T, angular correlations between muon and jets

Selected Results

part II

W and Z plus heavy flavours

describes data

0.5

1()()

300

400 500 600 700 800

Leading b-jet p₁ [GeV]

900

- good description for SHERPA 5FNS, and SHERPA FUSING 4+5FNS (*)
- all other predictions exhibit a smaller rapidity separation
- different predictions for LO ALPGEN using different PDFs (small effect)

(*) "Fusing" ME at NLO for up to 2 partons, and ME at LO for up to 3 partons. It includes both Z + bb events generated in the 4FNS at NLO with massive b-quarks, and Z+jets events generated in the 5FNS at NLO. Phys. Rev. D 100 (2019) 014011

15

new! Z plus b quarks @ 13 TeV JHEP 07 (2020) 44

ΔR_{bb} sensitive to the Z+bb production mechanisms

ATLAS @ 13 TeV

CMS @ 13 TeV

Z+b/Z+c, Z+b/Z+j and Z+c/Z+j

• pp collisions @13 TeV, 35.9 fb⁻¹ data (2016)

Phys. Rev. D 102 (2020) 032007

- Ratios of unfolded cross sections: $\sigma(Z + b/c) / \sigma(Z + jets)$ and $\sigma(Z + c) / \sigma(Z + b) \rightarrow$ reduce impact of several systematic uncertainties
- Important test of pQCD, background to ZH production
- Measured inclusive and differential cross-section as function of p_T jet and $p_T(Z)$ compared to LO and NLO QCD predictions

NLO MG5_aMC (NNPDF) and LO MG5_aMC (NNPDF) predictions higher but compatible with data in most bins

For R(c/j) deviations more pronounced, data better described at LO

LO MCFM, NLO MCFM (NNPDF), NLO MCFM (MMHT): prediction for R(c/j) and R(b/j) disagree with data at high p_T(Z)

R(c/b)

NLO MG5_aMC (NNPDF) and LO MG5_aMC (NNPDF) predictions higher but compatible with data in most bins

For R(c/j) deviations more pronounced, data better described at LO

LO MCFM, NLO MCFM (NNPDF), NLO MCFM (MMHT): prediction for R(c/j) and R(b/j) disagree with data at high p_T(Z)

Phys. Rev. D 102 (2020) 032007

Selected Results

part III

The role of PS and tuning in V+Jets

Hadronization & Tuning

CMS delivered a set of Pythia8 Tunes for Run2, tested over a wide variety of physics scenarios (including V+jets!)

https://arxiv.org/pdf/1903.12179.pdf

Tunes are extracted by fitting observables sensitive to UE Charged-particle multiplicity and charged-particle scalar- p_T sum (p_T^{sum}) densities

Parameter description	Range considered
MPI threshold [GeV], pTORef, at $\sqrt{s} = \sqrt{s_0}$	1.0–3.0
Exponent of \sqrt{s} dependence, ϵ	0.0–0.3
Matter fraction contained in the core	0.1–0.95
Radius of the core	0.1–0.8
Range of color reconnection probability	1.0–9.0

parametrize the dependence of the predictions in bin i on the tuning parameters

Observables

$$\chi^{2}(p) = \sum_{O_{j}} \sum_{i} \frac{(f_{i,O_{j}}(p) - R_{i,O_{j}})^{2}}{\Delta_{i,O_{j}}^{2}}$$

Value of the measured observable in bin i

Total experimental uncertainty of Ri

Hadronization & Tuning

CMS delivered a set of Pythia8 Tunes for Run2, tested over a wide variety of physics scenarios (including V+jets!)

https://arxiv.org/pdf/1903.12179.pdf

CP1: NNPDF3.1 PDF set at LO, with α_s values used for simulation of MPI, hard scattering, FSR, and ISR equal to, respectively, 0.13, 0.13, 0.1365, and 0.1365

CP2: same as CP1 but with α_s values all equal to 0.13

CP3: NNPDF3.1 PDF set at NLO, with α_s all equal to 0.118

CP4: NNPDF3.1 PDF set at NNLO, same values of α_s as CP3

CP5: same settings as CP4, but with ISR emissions ordered according to rapidity

PROFESSOR for fitting and RIVET for validation

Validation with Underlying Event in Z+Jets

UE in Z+jets matrix element generation made by madgraph_aMC@NLO [FxFx]

pT(μ)>20/10 GeV |Mμμ-91| < 20 GeV eta < 2 old-Monash based tune CUETPM1 not able to describe the Z CP5 gives the average best description in all regions all tunes describe data

Validation with hard QCD in V+Jets

Z-J balance: hadronic activity not clustered in jets generate imbalance (!) Only below 20 GeV we see differences among tunes

 $p_T^{bal} = |p_T(Z) + \sum p_T^j|$

jets

The V+jet LHC Electroweak Working Group

CMS

ALICE

THEORY

NEW

Results which cannot be re-interpreted

Rivet routines

Bootstrap histograms

Statistical correlation matrices

Post-fit impacts

Specific conventions for preserved objects and examples.

1

1.1

1.2

2

2.1

3

4.1

4.2

4.3

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

4.5.6

4.6

Contents	Common effort across LHC experiment t deliver results on V+Jets topologies			
Benchmark Comparisons Jets		1 1 1	Three main projects	
LHC TuneDetermination of intrinsic k_T Jetsubstructure		3 3 5	Topical workshops organized periodically	
Systematic Uncertaity Treatment and Correlations Introduction Current workflow to preserve analysis results Limitations of current recommendations for HEPData entries Three scenarios for analysis preservation	 · · · · · · · · · · · · · · · · · · ·	7 7 7 8 9	Yellow-report document in preparation	
 Scenario A - Minimum Requirements for Analysis Preser Scenario B - Approximate Re-interpretability Scenario C - Maximum Re-interpretability 	Era Era	am R	izvi and <u>Benjamin Nachman</u>	

NEW Vieri Candelise, Mikko Voutilainen, Hannes Jung

Stephen Farry and Will Barter

NEW NEW James Mulligan and Nima Zardoshti

Marek Schoenherr

Some recent benchmark comparisons results UNCEN

 $p_t(Z)$ GeV

Summary and conclusions

- LHC is a V+jet factory: a rich QCD phenomenology can be explored with experimental data
- QCD can be tested up to NNLO exploiting generators with different calculation *philosophy*
- Several new measurements at 13 TeV with V+Jets and V+HF - Outstanding precision is achieved by experiments
- A lot is ongoing and the best is yet to come... stay tuned!!

Present and future of V+Jets at LHC (my personal view!)

Making experimental SM analyses up to publication is super hard and takes a longer time than searches: we need to find more manpower and be attractive for PhD students!

) After years of no striking hints of BSM, LHC experimental community started looking at SM results again with more and more interest

- **Rivet routines** we need to raise awareness on their importance. That's our tool to play with phenomenology!
- The LHC Electroweak Working Group has an important and strong multi-group structure and it has dedicated V+Jets conveners: huge potential to be exploited!
- TMDs recently demonstrated their crucial role for future comparisons in V+jets and H+jets
 - Photon plus jets is a huge missing in this picture, and we can do a lot of QCD with photon plus N jets and HF

backup

Standard Model measurements in 2020

Standard Model measurements in 2020

Status of theoretical calculations

$MadGraph5_aMC@NLO\ (\mathsf{ME})\ +\ PYTHIA8\ /\ HERWIG\ (\mathsf{PS})$

- LO: up to 4 partons, kT-MLM matching
- NLO: up to 2 partons, FxFx merging
- Powheg (ME) + PYTHIA8 (PS) up to NLO
- Sherpa (ME + PS) up to NLO
- **Geneva** 1.0-RC2 (ME) + PYTHIA8 (PS):
 - NNLO DY production + NNLL higher order resummation
 - Only for Z+jets processes
- · MCFM (ME)
 - Z/W+1 jet NNLO calculations

HF treatment

- 4FS, b mass and 4 PDFs
- 5FS b mass=0 and 5 PDFs

Samples	0 j	1 j	2 j	3 ј	4 j	> 4 j
LO MG5_aMC	LO	LO	LO	LO	LO	PS
NLO MG5_aMC/Powheg	NLO	NLO	NLO	LO	PS	PS
Geneva	NLO	NLO	LO	PS	PS	PS
Z/W+1 jet @ NNLO	_	NNLO	NLO	LO	_	_

How all of this is possible

precision SM tests, differential spectra and sensitivity to very rare processes are possible exploiting the ATLAS and CMS excellent detector performances

Electrons identification with $Z \rightarrow e^+e^-$ and $J/\psi \rightarrow e^+e^-$

both ATLAS and CMS achieve sub-% precision

How all of this is possible

How all of this is possible

ATLAS

both deliver jet energy corrections

CMS

Jet Reconstruction: Strategy

ATLAS topological calorimeter-cell clusters Had. cal. Calorimeter jet Em. cal. π , K etc. Particle jet Parton jet

anti-k_T clustering algorithm (infrared and collinear safe)

ATLAS/CMS: R=0.4 (Run II)

LHCb: R=0.5

CMS

particle-flow

uses all the sub-detectors information to reconstruct objects

 $(2 < \eta < 5)$

LHCb

LHCb acceptance forward direction

Particle Flow

calo cell $E_T \sim 10$ GeV saturation \downarrow use use the precise \rightarrow particles! tracking information $(\Lambda, Ks, \pi, ...)$

Heavy flavor tagging at collider

recipe

- reconstruct jets with the anti-kT05 algorithm
- tagging using b- and c- inclusive tagger
- reconstruct the two-body vertices in the event
- merge SV n-body by linking tracks and vertices associated
- associate vertices/jets requiring $\Delta R(SV, jet) < 0.5$

BDT trained on SV/j properties to separate heavy/light

light-jet mistag rate < 1% for b-tag efficiency of 65% and c-tag efficiency of 25%

JINST 10 (2015) P06013

Heavy flavor tagging at collider

- several taggers:
 - track based (impact parameter tag)
 - soft muon (discriminate µ from b decays)
 - vertex based
- high-level taggers: MVA using all the information available to maximize the b-tag performance

ATL-PHYS-PUB-2017-013 ATLAS-FTAG-2017-003

trained on top + Z'bb events (*hybrid training*)

Deep Learning Neural Network

BDT

combine inputs from track, particle and vertex-based physics taggers using multivariate classifier

Heavy flavor tagging at collider

several taggers:

Misidentification probability

 10^{-3}

0

0.1

- Jet Probability: likelihood that jets is coming from primary vertex using tracks
- Combined (CSV): combination of displaced tracks with SV info associated to the jet using an MVA
- **CSVv2** evolution of CSV using neural networks

cMVAv2 combines all the taggers

improves ~4% the btag efficiency with a mistag rate of 0.1%

+ more charged particles, based on deep NN

deepCSV: based on CSVv2 •

CERN-CMS-DP-2017-005 CMS-PAS-BTV-15-001 operating point discriminator value ϵ_{b} (%)

NLO MG5_aMC (NNPDF) and LO MG5_aMC (NNPDF) predictions higher but compatible with data in most bins

For R(c/j) deviations more pronounced, data better described at LO

LO MCFM, NLO MCFM (NNPDF), NLO MCFM (MMHT): predictions compatible with data

NLO MG5_aMC (NNPDF) and LO MG5_aMC (NNPDF) predictions higher but compatible with data in most bins

For R(c/j) deviations more pronounced, data better described at LO

LO MCFM, NLO MCFM (NNPDF), NLO MCFM (MMHT): predictions compatible with data

RESUM

ATLAS® 13 TeV Z plus b quarks @ 13 TeV

8 Theoretical predictions:

compared with unfolded cross-section results and normalised to their own cross-section

- LO vs NLO
- 4FNS vs 5FNS

Generator	$N_{\rm max}^{\rm partons}$		FNS	PDF	Parton	
	NLO LO			set	Shower	
Z+jets (including Z + b and Z + bb)						
Sherpa 5FNS (NLO)	2	4	5	NNPDF3.0nnlo	Sherpa	
Sherpa Fusing 4FNS+5FNS (NLO)	2	3	5 (*)	NNPDF3.0nnlo	Sherpa	
Alpgen + Py6 4FNS (LO)	-	5	4	CTEQ6L1	Рутніа v6.426	
Alpgen + Py6 (rew. NNPDF3.0lo)	-	5	4	NNPDF3.01o	Рутніа v6.426	
MGAMC + Py8 5FNS (LO)	-	4	5	NNPDF3.0nlo	Рутніа v8.186	
MGAMC + Py8 5FNS (NLO)	1	-	5	NNPDF3.0nnlo	Рутніа v8.186	
Z+bb						
Sherpa Zbb 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	Sherpa	
MGAMC + Py8 Zbb 4FNS (NLO)	2	-	4	NNPDF3.0nnlo	Рутніа v8.186	

SHERPA FUSING with mixed approach for 4FNS+5FNS

m_{jj} [GeV]

Rapidity Gap in VBF topologies

Rapidity Gap

- Low hadronic activity expected in $\Delta\eta JJ$ region due to pure EW nature of interaction
- No color flow between the two tagged highly separated jets

