Rapidity anomalous dimension: theory and practice

Alexey Vladimirov

Resummation, Evolution, Factorization

Edinburgh, 2020

Collins-Soper kernel is a fundamental universal function that measures properties of QCD vacuum

Many names - single object

- Collins-Soper kernel; K
- Rapidity anomalous dimension (RAD); $\mathcal{D}, \gamma_{\nu}^{f^{\perp}}, \gamma_{\zeta}$
- Collinear anomaly; $F_{q \bar{q}}$

$$
\mathcal{D}=-\frac{1}{2} K=\frac{1}{2} F_{q \bar{q}}=-\frac{1}{2} \gamma_{\nu}^{f_{\perp}}=-\frac{1}{2} \gamma_{\zeta}
$$

Outline

- Rapidity divergences and their renomalization
- Extractions of CS-kernel
- Non-perturbative definition

Universitãt Regensburg

Collins-Soper kernel is the evolution kernel for TMD distributions

$$
\begin{aligned}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta) \\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta) & =-\mathcal{D}^{f}(b, \mu) F_{f \leftarrow h}(x, b ; \mu, \zeta)
\end{aligned}
$$

Some properties

- RAD depends only on the color-representation (quark/gluon) I will assume quark everywhere.
- RAD is non-perturbative
- RAD evolves as

$$
\mu \frac{d}{d \mu} \mathcal{D}(b, \mu)=\Gamma_{\text {cusp }}(\mu)
$$

- RAD is a property of operator

$$
O_{\mathrm{TMD}}=\bar{q}(\lambda n+b)[\lambda n+b,-\infty n+b] \ldots[-\infty n, 0] q(0)
$$

Universitãt Regensburg

$$
O_{\mathrm{TMD}}=\bar{q}(\lambda n+b)[\lambda n+b,-\infty n+b] \ldots[-\infty n, 0] q(0)
$$

UV divergence

- Local (number)
- Anomalous dimension of quark field in LC gauge

$$
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, b ; \mu, \zeta)=\frac{\gamma_{F}^{f}(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b ; \mu, \zeta)
$$

$$
O_{\mathrm{TMD}}=\bar{q}(\lambda n+b)[\lambda n+b,-\infty n+b] \ldots[-\infty n, 0] q(0)
$$

Rapidity divergence

- Non-Local (depends on b)
- Not regularized by dim.reg.
- Rapidity anomalous dimension

$$
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, b ; \mu, \zeta)=-\mathcal{D}^{f}(b, \mu) F_{f \leftarrow h}(x, b ; \mu, \zeta)
$$

$$
O_{\mathrm{TMD}}=\bar{q}(\lambda n+b)[\lambda n+b,-\infty n+b] \ldots[-\infty n, 0] q(0)
$$

In non-singular gauges infinity is a single point

Rapidity divergence

- = Anomalous dimension of a distant cusp
- Distance $b \leftrightarrow$ angle

Universitãt Regensburg

$$
O_{\mathrm{TMD}}=\bar{q}(\lambda n+b)[\lambda n+b,-\infty n+b] \ldots[-\infty n, 0] q(0)
$$

Spatially compact

$$
\begin{gathered}
v_{1}^{2}=v_{2}^{2}=0 \\
\left(v_{1} v_{2}\right) \sim \frac{b^{2}}{A+b^{2}} \\
\hline
\end{gathered}
$$

Universităt Regensburg

$$
O_{\mathrm{TMD}}=\bar{q}(\lambda n+b)[\lambda n+b,-\infty n+b] \ldots[-\infty n, 0] q(0)
$$

$2 \mathcal{D}(\mu, b)=\gamma_{S}\left(\left(v_{1} v_{2}\right), \mu\right)$
RAD \leftrightarrow SAD correspondance
Exact in conformal field theories

Universităt Regensburg

$$
\begin{gathered}
\text { In QCD: } \\
2 \mathcal{D}\left(\mu, b ; \epsilon=\frac{\beta\left(\alpha_{s}\right)}{\alpha_{s}}\right)=\gamma_{S}\left(\left(v_{1} v_{2}\right), \mu\right)
\end{gathered}
$$

Consequences

- Rapidity divergence is multiplicatively renormalizable, by factor R

$$
\mathcal{D}(b, \mu)=\frac{1}{2} R^{-1}(b, \mu ; \nu) \frac{d}{d \ln \nu} R(b, \mu ; \nu)
$$

- Same RAD for all TMDs of twist-2 and twist-3 (same soft-factor at sub-leading power)
- ...
- N-loop RAD $+(\mathrm{N}+1)$-loop $\mathrm{SAD} \Rightarrow(\mathrm{N}+1)$-loop RAD
- Absence of odd-color structures in SAD

Universităt Regensburg

Rapidity anomalous dimension in perturbation theory

- 1-loop

$$
\mathcal{D}=-\frac{\Gamma_{0}}{2 \beta_{0}} \ln \left(1-\beta_{0} a_{s}(\mu) \ln \left(\frac{\mu^{2} \mathbf{b}^{2}}{4 e^{-2 \gamma}}\right)\right)+a_{s} \ldots
$$

- 2-loop
- 3-loop
- SAD/RAD correspondence
[Echevarria,et al,1511.05590][many others] [Li,Zhu,1604.01404]
[AV,1610.05791]

Universităt Regensburg

- RAD is non-perturbative function at large- b
- IR Renormalons at $n=1,2,3 \ldots$
[Korchemsky,Tafat,2001;Scimemi,AV;2016]

$$
\begin{equation*}
\mathcal{D}(b, \mu)=\mathcal{D}_{\text {pert }}(\mu, b)+b^{2} g_{K}+b^{4} \ldots \tag{1}
\end{equation*}
$$

Universitāt Regensburg

Extracted rapidity anomalous dimension

$$
\mathcal{D}_{\mathrm{NP}}(b, \mu)=\mathcal{D}_{\mathrm{perp}}\left(b^{*}, \mu\right)+c_{0} b b^{*}, \quad b^{*}=b / \sqrt{1+b^{2} / B_{N P}^{2}}
$$

- Extracted from joined fit of DY + SIDIS $(2<Q<150 \mathrm{GeV})$
- Mild correlation with TMDs
- Stable with respect to collinear input

Comparing different extractions

Measurements of CS-kernel on lattice

based on [AV,Schafer,2002.07527]
see also [Ebert,Stewart,Zhao,1811.00026]

Results by Regensburg lattice group

Different matrix elements

Comparison with
[Shanahan, et al, \& Zhang, et al]

Many questions!

- If RAD is "an independent non-perturbative function" how to define in quantum field theory?
- Are there ways to compute the large-b for RAD?
- What it measures/means?

$$
\Longrightarrow[A V, 2003.02288] \text {, Phys.Rev.Lett. } 125 \text { (2020) } 19
$$

Universitāt Regensburg

Defining rapidity anomalous dimension

- RAD appears in TMD soft factor

$$
S(b, \mu)=\frac{\operatorname{Tr}}{N_{c}}\langle 0| W_{C}|0\rangle Z_{S}^{2}(\mu)
$$

- In some proper regularization of rap.div. $(\varrho \rightarrow 0)$

$$
S(b, \mu)=\exp (2 \mathcal{D}(b, \mu) \ln \varrho+B(b, \mu)+\ldots)
$$

Suitable regulator

- Defined on the operator level
- Preserve gauge invariance
- Do not introduce extra divergences (nor mix with other divergences)

All "convenient" regulators fail...
It can be done by geometric deformation of WL's

$$
\varrho=\left(\Lambda_{+} \Lambda_{-}\right)^{-1}
$$

Universitãt Regensburg

Only one Λ is needed

$$
\begin{gathered}
S(b, \mu)=\frac{\operatorname{Tr}}{N_{c}}\langle 0| W_{C^{\prime}}\left(\Lambda_{+} \lambda_{-}\right)|0\rangle Z_{S}^{2}(\mu)=\exp \left(-2 \mathcal{D}(b, \mu) \ln \left(\Lambda_{+} \lambda_{-}\right)+B(\mu, b)+O\left(\frac{1}{\Lambda_{+} \lambda_{-}}\right)\right) \\
\mathcal{D}(b, \mu)=\frac{1}{2} \lim _{+} \frac{d \ln S_{C^{\prime}}(b, \mu)}{d \ln \lambda_{-}}
\end{gathered}
$$

$$
\mathcal{D}(b, \mu)=\lambda_{-} \frac{i g}{2} \frac{\operatorname{Tr} \int_{0}^{1} d \beta\langle 0| F_{b+}\left(-\lambda_{-} n+b \beta\right) W_{C^{\prime}}|0\rangle}{\operatorname{Tr}\langle 0| W_{C^{\prime}}|0\rangle}+Z_{\mathcal{D}}(\mu)
$$

- λ_{-}independent!
- Additive renormalization $\frac{d Z_{\mathcal{D}}}{d \ln \mu}=\Gamma_{c u s p}(\mu)$

Universităt Regensburg

Perturbation

$$
\text { LO-diagram }=-4 g^{2} C_{F} \frac{\Gamma(2-\epsilon)}{4 \pi^{d / 2}} \lambda_{-} \int_{0}^{1} d \beta \int_{-\infty}^{0} d \alpha \frac{b^{2} \beta}{\left[-2 \alpha \lambda_{-}-\beta^{2} b^{2}+i 0\right]^{2-\epsilon}}
$$

$$
\mathcal{D}_{\mathrm{LO}}=-2 C_{F} a_{s}\left[\Gamma(-\epsilon)\left(\frac{\mathbf{b}^{2} \mu^{2}}{4 e^{-\gamma_{E}}}\right)^{\epsilon}+\frac{1}{\epsilon}\right]
$$

- Exactly coincides with ordinary computation (as function of ϵ)
- Renormalization is indeed additive
- Structure of integrals here and in SF is different
- Some two-loop checks also made:
- Cancellation of rapidity divergences
- N_{f} and $1 / N_{c}$ terms (coincide at arbitrary ϵ !)

Universităt Regensburg

$$
\mathcal{D}(b, \mu)=\mathcal{D}_{0}(b, \mu)+b^{2} \mathcal{D}_{2}(b)+b^{4} \mathcal{D}_{4}(b)+\ldots
$$

- \mathcal{D}_{0} starts from 1-loop, known up to 3-loop
- $\mathcal{D}_{2,4, . .}$ starts from tree-orders, unknown

$$
\begin{gathered}
b^{2} \text {-terms } \\
\mathcal{D}_{2}(b)=\frac{1}{2} \int_{0}^{\infty} d \mathbf{r}^{2} \frac{\varphi_{1}\left(\mathbf{r}^{2}, 0,0\right)}{\mathbf{r}^{2}}+O\left(\alpha_{s}\right)
\end{gathered}
$$

$$
\begin{gather*}
\Phi_{\mu \nu}(x, y)=g^{2}\langle 0| F_{\mu x}(x)[x, 0][0, y] F_{\nu y}(y)|0\rangle \\
\Phi_{\mu \nu}(x, y)=\left(g_{\mu \nu}-\frac{y_{\mu} x_{\nu}}{(x y)}\right) \varphi_{1}\left(r^{2}, x^{2}, y^{2}\right) \tag{16}\\
\quad+\frac{\left(x_{\mu}(x y)-y_{\mu} x^{2}\right)\left(y_{\nu}(x y)-x_{\nu} y^{2}\right)}{(x y)\left((x y)^{2}-x^{2} y^{2}\right)} \varphi_{2}\left(r^{2}, x^{2}, y^{2}\right)
\end{gather*}
$$

where $r^{2}=(x-y)^{2}$. At $x^{2}=y^{2}=0, \varphi_{2}$ vanishes

- Model-independent expression for power correction to CS kernel
- I have also checked it by direct computation of TMD SF in the back-ground (and extraction of rapidity divergence in δ-regulator)
- Gluon $=\frac{C_{A}}{C_{F}}$ Quark
- Intriguing: This operator is a conf.trans. of gluon TMD operator...

Numerical estimation

$$
\begin{aligned}
\mathcal{D}_{2}(b)= & \frac{1}{2} \int_{0}^{\infty} d \mathbf{r}^{2} \frac{\varphi_{1}\left(\mathbf{r}^{2}, 0,0\right)}{\mathbf{r}^{2}}+O\left(\alpha_{s}\right) \\
& \lim _{\mathbf{r}^{2} \rightarrow 0} \frac{\varphi_{1}\left(\mathbf{r}^{2}, 0,0\right)}{\mathbf{r}^{2}}=\frac{\pi^{2}}{36} G_{2}
\end{aligned}
$$

Assuming that φ_{1} has some effective radius $\sim \Lambda_{Q C D}^{-1}$

$\mathcal{D}_{2} \sim \frac{\pi^{2}}{72} \frac{G_{2}}{\Lambda_{Q C D}^{2}} \simeq(1 .-5.) \times 10^{-2} \mathrm{GeV}^{-2}$
$\mathcal{D}_{2} \times 10^{2}$
:---:

The power correction(s) is notably small numerically.
Must be so, since it is (they are) vacuum-dominated parameters

Universităt Regensburg

- At large-b linear asymptotic

$$
\lim _{\mathbf{b}^{2} \rightarrow \infty} \mathcal{D}(b)=\sqrt{\mathbf{b}^{2}} \underbrace{\int_{0}^{\infty} d \mathbf{y}^{2} 2 \sqrt{y^{2}} \Delta\left(\mathbf{y}^{2}\right)}_{c_{\infty}}
$$

- Lattice computations [Bali,Brambilla,Vairo,97; Meggiolaro,98]

$$
c_{\infty} \simeq 0.01-0.4 \mathrm{GeV} \quad \text { compare to } \quad c_{\infty}^{\mathrm{SV} 19} \simeq 0.06 \pm 0.01 \mathrm{GeV}
$$

Universitãt Regensburg

- At large-b linear asymptotic

$$
\lim _{\mathbf{b}^{2} \rightarrow \infty} \mathcal{D}(b)=\sqrt{\mathbf{b}^{2}} \underbrace{\int_{0}^{\infty} d \mathbf{y}^{2} 2 \sqrt{y^{2}} \Delta\left(\mathbf{y}^{2}\right)}_{c_{\infty}}
$$

- Lattice computations [Bali,Brambilla,Vairo,97; Meggiolaro,98]

$$
c_{\infty} \simeq 0.01-0.4 \mathrm{GeV} \quad \text { compare to } \quad c_{\infty}^{\mathrm{SV} 19} \simeq 0.06 \pm 0.01 \mathrm{GeV}
$$

- In SVM the confining potential is [Brambilla,Vairo,hep-ph/9606344]

$$
V(\boldsymbol{b})=2 \int_{0}^{\boldsymbol{b}} d \boldsymbol{y}(\boldsymbol{b}-\boldsymbol{y}) \int_{0}^{\infty} d \boldsymbol{r} \Delta\left(\sqrt{\boldsymbol{r}^{2}+\boldsymbol{y}^{2}}\right)+\int_{0}^{\boldsymbol{b}} d y \boldsymbol{y} \int_{0}^{\infty} d r \Delta_{1}\left(\sqrt{\boldsymbol{r}^{2}+\boldsymbol{y}^{2}}\right) .
$$

Universităt Regensburg

- At large-b linear asymptotic

$$
\lim _{\mathbf{b}^{2} \rightarrow \infty} \mathcal{D}(b)=\sqrt{\mathbf{b}^{2}} \underbrace{\int_{0}^{\infty} d \mathbf{y}^{2} 2 \sqrt{y^{2}} \Delta\left(\mathbf{y}^{2}\right)}_{c_{\infty}}
$$

- Lattice computations [Bali,Brambilla,Vairo,97; Meggiolaro,98]

$$
c_{\infty} \simeq 0.01-0.4 \mathrm{GeV} \quad \text { compare to } \quad c_{\infty}^{\mathrm{SV} 19} \simeq 0.06 \pm 0.01 \mathrm{GeV}
$$

- In SVM the confining potential is [Brambilla,Vairo,hep-ph/9606344]

$$
V(r)=r \frac{\pi}{4} \mathcal{D}^{\prime \prime}(0)+\frac{\mathcal{D}^{\prime}(0)}{2}+\frac{r^{2}}{2} \int_{r}^{\infty} \frac{d x}{x^{2}} \frac{\mathcal{D}^{\prime}(x)}{\sqrt{x^{2}-r^{2}}}+\ldots
$$

Conclusion

Collins-Soper kernel is the way to study QCD vacuum with hadron-collider experiments

Self-contained definition of Collins-Soper kernel

- Definition without reference to any process/distribution
- A way to power-corrections, non-perturbative modeling and interpretations
- A peculiar quantum-field-theoretical construction: anomalous dimension as a matrix element
- Casimir scaling at power-correction level

Universitãt Regensburg

