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▶ Collinear factorization is commonly used

▶ Some classes of processes require more
general scheme

▶ Factorization in partonic cross-section and
transverse momentum dependent PDFs
(TMDs)

▶ TMDs much less known than PDFs at present → future experimental programs

▶ TMDs from Parton Branching (PB) method: Can be used in Monte Carlo events generators
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Angular ordering

▶ Angular ordering in initial state radiation:

Θ𝑖+1 > Θ𝑖 → ̄𝑞⊥,𝑖+1 > 𝑧𝑖 ̄𝑞⊥,𝑖

with ̄𝑞⊥,𝑖 = 𝑞⊥,𝑖
1−𝑧𝑖

rescaled transverse momentum of emitted
parton

In limit z→1, this gives: ̄𝑞⊥,𝑖+1 > ̄𝑞⊥,𝑖

→ Associate evolution scale 𝜇 = ̄𝑞⊥,𝑖

Widely used concept, examples:

▶ PDFs: Catani-Marchesini-Webber (CMW)
▶ Event generator: HERWIG
▶ To obtain TMDs: PB
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Iterative evolution equations

▶ 𝑃 𝑅
𝑎𝑏(𝑧): (real emission part of) Splitting functions: Probabilty that a branching will happen

𝑏: incoming parton, 𝑎: outgoing parton, 𝑧 momentum fraction of parton 𝑎 to 𝑏

▶ Sudakov form factor:

Δ𝑎(𝜇2) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0 𝑑𝑧 𝑧 𝑃 𝑅

𝑏𝑎(𝑧))

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2

0) Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃 𝑅

𝑎𝑏(𝑧)Δ𝑏(𝜇′2) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇2

0) + ...

+ + + ...𝑎, k⊥

𝜇0

𝜇

𝑏, k⊥ + q′
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇0

𝜇

𝑐, k⊥ + q″
⊥ + q′

⊥

𝑏, k⊥ + q″
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇″ q″
⊥

𝜇0

𝜇

q′
⊥ = (1 − 𝑧′)𝜇′

q″
⊥ = (1 − 𝑧″)𝜇″

PB calculates k⊥ from every
branching:

k⊥ = k⊥,0 − ∑𝑖 q⊥,𝑖

Can be solved with MC methods.

4/14



Iterative evolution equations

▶ 𝑃 𝑅
𝑎𝑏(𝑧): (real emission part of) Splitting functions: Probabilty that a branching will happen

𝑏: incoming parton, 𝑎: outgoing parton, 𝑧 momentum fraction of parton 𝑎 to 𝑏

▶ Sudakov form factor:

Δ𝑎(𝜇2) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0 𝑑𝑧 𝑧 𝑃 𝑅

𝑏𝑎(𝑧))

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2

0) Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃 𝑅

𝑎𝑏(𝑧)Δ𝑏(𝜇′2) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇2

0) + ...

+ + + ...𝑎, k⊥

𝜇0

𝜇

𝑏, k⊥ + q′
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇0

𝜇

𝑐, k⊥ + q″
⊥ + q′

⊥

𝑏, k⊥ + q″
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇″ q″
⊥

𝜇0

𝜇

q′
⊥ = (1 − 𝑧′)𝜇′

q″
⊥ = (1 − 𝑧″)𝜇″

PB calculates k⊥ from every
branching:

k⊥ = k⊥,0 − ∑𝑖 q⊥,𝑖

Can be solved with MC methods.

4/14



Iterative evolution equations

▶ 𝑃 𝑅
𝑎𝑏(𝑧): (real emission part of) Splitting functions: Probabilty that a branching will happen

𝑏: incoming parton, 𝑎: outgoing parton, 𝑧 momentum fraction of parton 𝑎 to 𝑏

▶ Sudakov form factor:

Δ𝑎(𝜇2) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0 𝑑𝑧 𝑧 𝑃 𝑅

𝑏𝑎(𝑧))

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2

0) Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃 𝑅

𝑎𝑏(𝑧)Δ𝑏(𝜇′2) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇2

0) + ...

+ + + ...

𝑎, k⊥

𝜇0

𝜇

𝑏, k⊥ + q′
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇0

𝜇

𝑐, k⊥ + q″
⊥ + q′

⊥

𝑏, k⊥ + q″
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇″ q″
⊥

𝜇0

𝜇

q′
⊥ = (1 − 𝑧′)𝜇′

q″
⊥ = (1 − 𝑧″)𝜇″

PB calculates k⊥ from every
branching:

k⊥ = k⊥,0 − ∑𝑖 q⊥,𝑖

Can be solved with MC methods.

4/14



Iterative evolution equations

▶ 𝑃 𝑅
𝑎𝑏(𝑧): (real emission part of) Splitting functions: Probabilty that a branching will happen

𝑏: incoming parton, 𝑎: outgoing parton, 𝑧 momentum fraction of parton 𝑎 to 𝑏

▶ Sudakov form factor:

Δ𝑎(𝜇2) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0 𝑑𝑧 𝑧 𝑃 𝑅

𝑏𝑎(𝑧))

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2

0) Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃 𝑅

𝑎𝑏(𝑧)Δ𝑏(𝜇′2) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇2

0) + ...

+

+ + ...

𝑎, k⊥

𝜇0

𝜇

𝑏, k⊥ + q′
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇0

𝜇

𝑐, k⊥ + q″
⊥ + q′

⊥

𝑏, k⊥ + q″
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇″ q″
⊥

𝜇0

𝜇

q′
⊥ = (1 − 𝑧′)𝜇′

q″
⊥ = (1 − 𝑧″)𝜇″

PB calculates k⊥ from every
branching:

k⊥ = k⊥,0 − ∑𝑖 q⊥,𝑖

Can be solved with MC methods.

4/14



Iterative evolution equations

▶ 𝑃 𝑅
𝑎𝑏(𝑧): (real emission part of) Splitting functions: Probabilty that a branching will happen

𝑏: incoming parton, 𝑎: outgoing parton, 𝑧 momentum fraction of parton 𝑎 to 𝑏

▶ Sudakov form factor:

Δ𝑎(𝜇2) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0 𝑑𝑧 𝑧 𝑃 𝑅

𝑏𝑎(𝑧))

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2

0) Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃 𝑅

𝑎𝑏(𝑧)Δ𝑏(𝜇′2) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇2

0) + ...

+ + + ...𝑎, k⊥

𝜇0

𝜇

𝑏, k⊥ + q′
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇0

𝜇

𝑐, k⊥ + q″
⊥ + q′

⊥

𝑏, k⊥ + q″
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇″ q″
⊥

𝜇0

𝜇

q′
⊥ = (1 − 𝑧′)𝜇′

q″
⊥ = (1 − 𝑧″)𝜇″

PB calculates k⊥ from every
branching:

k⊥ = k⊥,0 − ∑𝑖 q⊥,𝑖

Can be solved with MC methods.

4/14



Iterative evolution equations

▶ 𝑃 𝑅
𝑎𝑏(𝑧): (real emission part of) Splitting functions: Probabilty that a branching will happen

𝑏: incoming parton, 𝑎: outgoing parton, 𝑧 momentum fraction of parton 𝑎 to 𝑏

▶ Sudakov form factor:

Δ𝑎(𝜇2) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0 𝑑𝑧 𝑧 𝑃 𝑅

𝑏𝑎(𝑧))

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2

0) Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃 𝑅

𝑎𝑏(𝑧)Δ𝑏(𝜇′2) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇2

0) + ...

+ + + ...𝑎, k⊥

𝜇0

𝜇

𝑏, k⊥ + q′
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇0

𝜇

𝑐, k⊥ + q″
⊥ + q′

⊥

𝑏, k⊥ + q″
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇″ q″
⊥

𝜇0

𝜇

q′
⊥ = (1 − 𝑧′)𝜇′

q″
⊥ = (1 − 𝑧″)𝜇″

PB calculates k⊥ from every
branching:

k⊥ = k⊥,0 − ∑𝑖 q⊥,𝑖

Can be solved with MC methods.

4/14



Iterative evolution equations

▶ 𝑃 𝑅
𝑎𝑏(𝑧): (real emission part of) Splitting functions: Probabilty that a branching will happen

𝑏: incoming parton, 𝑎: outgoing parton, 𝑧 momentum fraction of parton 𝑎 to 𝑏

▶ Sudakov form factor:

Δ𝑎(𝜇2) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0 𝑑𝑧 𝑧 𝑃 𝑅

𝑏𝑎(𝑧))

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2 Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2

0) Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃 𝑅

𝑎𝑏(𝑧)Δ𝑏(𝜇′2) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇2

0) + ...

+ + + ...𝑎, k⊥

𝜇0

𝜇

𝑏, k⊥ + q′
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇0

𝜇

𝑐, k⊥ + q″
⊥ + q′

⊥

𝑏, k⊥ + q″
⊥

𝑎, k⊥

𝜇′ q′
⊥

𝜇″ q″
⊥

𝜇0

𝜇

q′
⊥ = (1 − 𝑧′)𝜇′

q″
⊥ = (1 − 𝑧″)𝜇″

PB calculates k⊥ from every
branching:

k⊥ = k⊥,0 − ∑𝑖 q⊥,𝑖

Can be solved with MC methods.
4/14



Parton Branching equations

Parton branching equations for TMDs:

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2

Δ𝑎(𝜇2)
Δ𝑎(𝜇′2)

Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2
0)×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃 𝑅

𝑎𝑏(𝑧) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇′2)

▶ AO condition: q2
⊥ = (1 − 𝑧)2𝜇′2

▶ Resolution scale 𝑧𝑀: resolvable 𝑧 < 𝑧𝑀 and
non-resolvable 𝑧 > 𝑧𝑀 branchings
Dynamical 𝑧𝑀 = 1 − 𝑞0/𝜇′

𝑞0 smallest emitted transverse momentum
[Hautmann, Keersmaekers, Lelek, van Kampen NuclPhysB (2019) 114795,1908.08524]

▶ Implicit in 𝑃 𝑅
𝑎𝑏(𝑧) and Δ𝑎(𝜇2): 𝛼𝑠(𝑞⊥)

▶ 𝑓𝑎(𝑥, 𝜇2) = ∫ 𝑑2k⊥
𝜋 𝒜𝑎(𝑥, k⊥, 𝜇2)

at LO → Catani-Marchesini-Webber
𝛼𝑠(𝜇) and 𝑧𝑀 = 1 → DGLAP
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𝜋 𝒜𝑎(𝑥, k⊥, 𝜇2)

at LO → Catani-Marchesini-Webber
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Effects of multiple branchings

Figure from [NuclPhysB (2019) 114795,1908.08524]

PB last step is a toy model where
k⊥ = k⊥,0 − q⊥,𝑛 (𝑞⊥ from last branching)
PB has k⊥ = k⊥,0 − ∑𝑖 q⊥,𝑖

▶ Intrinsic 𝑘⊥,0: Gaussian
̃𝒜𝑎(𝑥, k⊥,0, 𝜇2

0) =

𝑓𝑎(𝑥, 𝜇2
0) × 1

𝜎
√

2𝜋 exp (−
k2
⊥,0

2𝜎2 )

with 𝑞2
𝑠 = 𝜎2/2. Here 𝑞𝑠=0.5GeV

▶ Gaussian function is clearly visible in
”PB last step”→ partons that had no branching

▶ Very large bump visible around minimal
emitted 𝑞⊥: 𝑞0=1 GeV for ”PB last step”

▶ Many branchings smear out this bumps
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Effects of 𝑞0 and 𝑞𝑠

𝑞𝑠=0.5 GeV

𝑞0=1 GeV

𝑧𝑀 = 1 − 𝑞0/𝜇′

̃𝒜0 ≡
̃𝒜𝑎(𝑥, k⊥,0, 𝜇2

0) =
𝑓𝑎(𝑥, 𝜇2

0) ×
1

𝑞𝑠
√

𝜋 exp (−
k2
⊥,0
𝑞2𝑠

)

▶ 𝑞0 minimal emitted 𝑞⊥. When 𝑞0 is larger, resolvable region is smaller → Less branchings
→ More partons with intrinsic 𝑘⊥

▶ Bumps matching between Δ𝑎(𝜇) ̃𝒜0 and evolution. Many branchings smooth out bumps

▶ When 𝑞𝑠 closer to 𝑞0 → smoother
▶ 𝑞𝑠 only affects small 𝑘⊥-region when 𝜇 ≫ 𝑞𝑠
▶ Best value of 𝑞0, 𝑞𝑠 yet to be determined (fits with dyn. 𝑧𝑀). Choices of 𝑞0=1 GeV, 𝑞𝑠=0.5 GeV

seem to give good results [Eur.Phys.J.C 80 (2020) 7, 598]
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TMD Splitting functions

▶ Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]

▶ Goal of TMD Splitting Functions:

▶ Resummation in 𝛼𝑠 ln 1
𝑥

▶ Exact kinematics in both 𝑘⊥ and 𝑥

▶ 𝑃̃𝑞𝑔(𝑧, k⊥, q⊥) originally calculated

▶ Recently other splitting functions calculated [Gituliar, Hentschinski, Kutak JHEP 01 (2016) 181, 1511.08439],

[Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]

▶ All TMD Splitting functions go to the DGLAP splitting functions for 𝑘⊥ → 0

▶ PB uses DGLAP splitting functions, but those are not valid for small-x

▶ In PB 𝑘⊥ is known at every branching

⇒ Goal of this work: extend PB by including TMD splitting functions
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Evolution equations with TMD Splitting
functions

𝑃𝑎𝑏(𝑧) → 𝑃̃𝑎𝑏(𝑧, k⊥, q⊥)

Sudakov form factor: probability of an evolution without any resolvable branchings

▶ Sudakov should depend on k⊥

▶ Should sum over all possible splittings → integrate over all angles

Δ𝑎(𝜇2) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0

𝑑𝑧 𝑧 𝑃 𝑅
𝑏𝑎(𝑧)) →

Δ𝑎(𝜇2, k2
⊥) = exp (− ∑𝑏 ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 ∫𝑧𝑀
0

𝑑𝑧 𝑧 1
𝜋 ∫𝜋

0
𝑑𝜙𝑃̃ 𝑅

𝑏𝑎 (𝑧, k⊥, (1 − 𝑧)𝜇⊥
′))

̃𝒜𝑎(𝑥, k⊥, 𝜇2) = Δ𝑎(𝜇2, k⊥) ̃𝒜𝑎(𝑥, k⊥, 𝜇2
0) + ∑

𝑏
∫ 𝑑2𝜇′

⊥
𝜋𝜇′2

Δ𝑎(𝜇2, k⊥)
Δ𝑎(𝜇′2, k⊥)

Θ(𝜇2 − 𝜇′2)Θ(𝜇′2 − 𝜇2
0)×

× ∫
𝑧𝑀

𝑥
𝑑𝑧𝑃̃ 𝑅

𝑎𝑏(𝑧, k⊥ + (1 − 𝑧)𝜇′
⊥, (1 − 𝑧)𝜇′

⊥) ̃𝒜𝑏( 𝑥
𝑧

, k⊥ + (1 − 𝑧)𝜇′
⊥, 𝜇′2)
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Monte Carlo implementation

𝑃̃𝑎𝑏(𝑧, k⊥, q⊥):

▶ TMD splitting functions postitive definite

▶ No singularities in the PB phase space

𝑘⊥-dependent Sudakov:

▶ In PB MC code, the scale should be generated according to the Sudakov form factor:
Generate 𝑅 = Δ𝑎(𝜇2

𝑖 )/Δ𝑎(𝜇2
𝑖−1) → find 𝜇2

𝑖 = Δ−1
𝑎 (𝑅Δ𝑎(𝜇2

𝑖−1))
▶ Finding the inverse of Δ𝑎 is non trivial!

▶ In the normal PB code a table is calculated → interpolate to find 𝜇𝑖
With 𝑘⊥-dependent Sudakov form factor, additional dimension → extensive calculation

▶ Used VETO-algorithm instead
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VETO Algorithm [hep-ph/0603175]

Δ𝑎(𝜇2, k⊥) = exp (− ∫𝜇2

𝜇2
0

𝑑𝜇′2

𝜇′2 𝑓𝑎(𝜇′2, k⊥)) with

𝑓𝑎(𝜇2, k⊥) = ∑𝑏 ∫𝑧𝑀
0

𝑑𝑧 𝑧 1
𝜋 ∫𝜋

0
𝑑𝜙𝑃 𝑅

𝑏𝑎(𝑧, k⊥, 𝜇′
⊥)

Find better function 𝑔𝑎(𝜇2) ≥ 𝑓𝑎(𝜇2, k⊥) for all 𝜇.

1. Start with 𝑗 = 0, 𝜇2
𝑗=0 = 𝜇2

𝑖−1

2. j=j+1. Select 𝜇2
𝑗 > 𝜇2

𝑗−1 according to 𝑅1 = exp (− ∫
𝜇2

𝑗
𝜇2

𝑗−1

𝑑𝜇′2

𝜇′2 𝑔𝑎(𝜇′2))

3. if 𝑓(𝜇2
𝑗 )/𝑔(𝜇2

𝑗 ) ≤ 𝑅2 go to 2

4. else: 𝜇2
𝑗 is generated scale

Usually 𝑔 is chosen to have an known inverse function. We chose
𝑔𝑎(𝜇2) = ∑𝑏 ∫𝑧𝑀

0
𝑑𝑧 𝑧 (𝑃 𝑅

𝑏𝑎(𝑧) + ℎ𝑏𝑎(𝑧)). No known inverse, but:

▶ Close to 𝑓𝑎 → efficient

▶ No 𝑘⊥-dependence → table
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Integrated TMDs

We studied effects of TMD Splitting
functions on the evolution.
No fits has been done yet:

▶ Not yet ready for phenomenology

Implementation with:
▶ PB method (LO)
▶ PB with TMD Splitting functions

▶ Effects are small for large x →
reasonable since
𝑃̃𝑎𝑏(𝑧, k⊥, q⊥) −−−−→

𝑘⊥→0
𝑃𝑎𝑏(𝑧)

▶ PB is capable of handling TMD P
and TMD sudakov
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TMDs vs k⊥

▶ PB method (LO)
▶ PB with TMD Splitting functions

▶ Whole k⊥-region is affected

▶ With TMD P, bumps in distribution
are also visible

▶ Effects from 𝑞0 and 𝑞𝑠 in TMD P
are similar as in collinear case
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Summary and outlook

▶ I presented a parton branching algorithm for space-like parton evolution with
𝑘⊥-dependent splitting functions

▶ The splitting functions are a (positive-definite) 𝑘𝑇 ≠ 0 continuation of the LO
DGLAP splitting functions originally obtained from high-energy factorization

▶ 𝑘⊥-dependent splittings affect both real emission and Sudakov form factors
▶ They have been implemented in the PB-TMD Monte Carlo code uPDFevolv using

the veto algorithm
▶ New code is working and produces both collinear and TMD parton distributions -

paper in preparation
▶ Ready to do phenomenology:

▶ Perform fits to DIS and DY data to determine nonperturbative TMDs
▶ Use them to make PB-TMD predictions for LHC and EIC processes

including for the first time the effects of TMD splittings
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