Transverse momentum dependent splitting functions in Parton Branching based evolution equations

REF workshop 2020
L. Keersmaekers ${ }^{1}$, F. Hautmann ${ }^{12}$, M. Hentschinski ${ }^{3}$, H. Jung ${ }^{4}$, A. Kusina ${ }^{5}$, K.

Kutak ${ }^{5}$, A. Lelek ${ }^{1}$

Universiteit Antwerpen

Motivation

- Collinear factorization is commonly used
- Some classes of processes require more general scheme
- Factorization in partonic cross-section and transverse momentum dependent PDFs (TMDs)
- TMDs much less known than PDFs at present \rightarrow future experimental programs
- TMDs from Parton Branching (PB) method: Can be used in Monte Carlo events generators

Angular ordering

- Angular ordering in initial state radiation:
$\Theta_{i+1}>\Theta_{i} \rightarrow \bar{q}_{\perp, i+1}>z_{i} \bar{q}_{\perp, i}$
with $\bar{q}_{\perp, i}=\frac{q_{\perp, i}}{1-z_{i}}$ rescaled transverse momentum of emitted parton

In limit $z \rightarrow 1$, this gives: $\bar{q}_{\perp, i+1}>\bar{q}_{\perp, i}$

Angular ordering

- Angular ordering in initial state radiation:
$\Theta_{i+1}>\Theta_{i} \rightarrow \bar{q}_{\perp, i+1}>z_{i} \bar{q}_{\perp, i}$
with $\bar{q}_{\perp, i}=\frac{q_{\perp, i}}{1-z_{i}}$ rescaled transverse momentum of emitted parton

In limit $z \rightarrow 1$, this gives: $\bar{q}_{\perp, i+1}>\bar{q}_{\perp, i}$
\rightarrow Associate evolution scale $\mu=\bar{q}_{\perp, i}$

Angular ordering

- Angular ordering in initial state radiation:
$\Theta_{i+1}>\Theta_{i} \rightarrow \bar{q}_{\perp, i+1}>z_{i} \bar{q}_{\perp, i}$
with $\bar{q}_{\perp, i}=\frac{q_{\perp, i}}{1-z_{i}}$ rescaled transverse momentum of emitted parton

In limit $\mathrm{z} \rightarrow 1$, this gives: $\bar{q}_{\perp, i+1}>\bar{q}_{\perp, i}$
\rightarrow Associate evolution scale $\mu=\bar{q}_{\perp, i}$
Widely used concept, examples:

- PDFs: Catani-Marchesini-Webber (CMW)
- Event generator: HERWIG
- To obtain TMDs: PB

Iterative evolution equations

- $P_{a b}^{R}(z)$: (real emission part of) Splitting functions: Probabilty that a branching will happen
b : incoming parton, a : outgoing parton, z momentum fraction of parton a to b
- Sudakov form factor:
$\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right)$
Interpretation: probability of an evolution without any resolvable branchings

Iterative evolution equations

- $P_{a b}^{R}(z)$: (real emission part of) Splitting functions: Probabilty that a branching will happen
b : incoming parton, a : outgoing parton, z momentum fraction of parton a to b
- Sudakov form factor:

$$
\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right)
$$

Interpretation: probability of an evolution without any resolvable branchings
Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

$$
\begin{aligned}
& \tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \Delta_{b}\left(\mu^{\prime 2}\right) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu_{0}^{2}\right)+\ldots
\end{aligned}
$$

Iterative evolution equations

- $P_{a b}^{R}(z)$: (real emission part of) Splitting functions: Probabilty that a branching will happen
b : incoming parton, a : outgoing parton, z momentum fraction of parton a to b
- Sudakov form factor:

$$
\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right)
$$

Interpretation: probability of an evolution without any resolvable branchings
Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}(x, & \left.\mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \Delta_{b}\left(\mu^{\prime 2}\right) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu_{0}^{2}\right)+\ldots
\end{aligned}
$$

Iterative evolution equations

- $P_{a b}^{R}(z)$: (real emission part of) Splitting functions: Probabilty that a branching will happen
b : incoming parton, a : outgoing parton, z momentum fraction of parton a to b
- Sudakov form factor:
$\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right)$
Interpretation: probability of an evolution without any resolvable branchings
Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}(x, & \left.\mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \Delta_{b}\left(\mu^{\prime 2}\right) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu_{0}^{2}\right)+\ldots
\end{aligned}
$$

$$
\mathbf{q}_{\perp}^{\prime}=\left(1-z^{\prime}\right) \mu^{\prime}
$$

Iterative evolution equations

- $P_{a b}^{R}(z)$: (real emission part of) Splitting functions: Probabilty that a branching will happen
b : incoming parton, a : outgoing parton, z momentum fraction of parton a to b
- Sudakov form factor:

$$
\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right)
$$

Interpretation: probability of an evolution without any resolvable branchings
Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}(x, & \left.\mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \Delta_{b}\left(\mu^{\prime 2}\right) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu_{0}^{2}\right)+\ldots
\end{aligned}
$$

Iterative evolution equations

- $P_{a b}^{R}(z)$: (real emission part of) Splitting functions: Probabilty that a branching will happen
b : incoming parton, a : outgoing parton, z momentum fraction of parton a to b
- Sudakov form factor:

$$
\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right)
$$

Interpretation: probability of an evolution without any resolvable branchings
Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}(x, & \left.\mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \Delta_{b}\left(\mu^{\prime 2}\right) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu_{0}^{2}\right)+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{q}_{\perp}^{\prime}=\left(1-z^{\prime}\right) \mu^{\prime} \\
& \mathbf{q}_{\perp}^{\prime \prime}=\left(1-z^{\prime \prime}\right) \mu^{\prime \prime} \\
& \text { PB calculates } \mathbf{k}_{\perp} \text { from every } \\
& \text { branching: }
\end{aligned}
$$

$\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\sum_{i} \mathbf{q}_{\perp, i}$

Iterative evolution equations

- $P_{a b}^{R}(z)$: (real emission part of) Splitting functions: Probabilty that a branching will happen
b : incoming parton, a : outgoing parton, z momentum fraction of parton a to b
- Sudakov form factor:

$$
\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right)
$$

Interpretation: probability of an evolution without any resolvable branchings
Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}(x, & \left.\mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \Delta_{b}\left(\mu^{\prime 2}\right) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu_{0}^{2}\right)+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{q}_{\perp}^{\prime}=\left(1-z^{\prime}\right) \mu^{\prime} \\
& \mathbf{q}_{\perp}^{\prime \prime}=\left(1-z^{\prime \prime}\right) \mu^{\prime \prime} \\
& \text { PB calculates } \mathbf{k}_{\perp} \text { from every } \\
& \text { branching: }
\end{aligned}
$$

$\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\sum_{i} \mathbf{q}_{\perp, i}$

Can be solved with MC methods.

Parton Branching equations

Parton branching equations for TMDs:

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right) & =\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu^{\prime 2}\right)
\end{aligned}
$$

$>\mathrm{AO}$ condition: $\mathbf{q}_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$

Parton Branching equations

Parton branching equations for TMDs:

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right) & =\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu^{\prime 2}\right)
\end{aligned}
$$

$>\mathrm{AO}$ condition: $\mathbf{q}_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$
$>$ Resolution scale z_{M} : resolvable $z<z_{M}$ and non-resolvable $z>z_{M}$ branchings

Parton Branching equations

Parton branching equations for TMDs:

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right) & =\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu^{\prime 2}\right)
\end{aligned}
$$

- AO condition: $\mathbf{q}_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$
\rightarrow Resolution scale z_{M} : resolvable $z<z_{M}$ and non-resolvable $z>z_{M}$ branchings
Dynamical $z_{M}=1-q_{0} / \mu^{\prime}$
q_{0} smallest emitted transverse momentum
[Hautmann, Keersmaekers, Lelek, van Kampen NuclPhysB (2019) 114795,1908.08524

Parton Branching equations

Parton branching equations for TMDs:

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right) & =\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu^{\prime 2}\right)
\end{aligned}
$$

$>\mathrm{AO}$ condition: $\mathbf{q}_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$
\rightarrow Resolution scale z_{M} : resolvable $z<z_{M}$ and non-resolvable $z>z_{M}$ branchings
Dynamical $z_{M}=1-q_{0} / \mu^{\prime}$
q_{0} smallest emitted transverse momentum
[Hautmann, Keersmaekers, Lelek, van Kampen NuclPhysB (2019) 114795,1908.08524

- Implicit in $P_{a b}^{R}(z)$ and $\Delta_{a}\left(\mu^{2}\right): \alpha_{s}\left(q_{\perp}\right)$

Parton Branching equations

Parton branching equations for TMDs:

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right) & =\Delta_{a}\left(\mu^{2}\right) \tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}\right)} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \times \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{R}(z) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu^{\prime 2}\right)
\end{aligned}
$$

- AO condition: $\mathbf{q}_{\perp}^{2}=(1-z)^{2} \mu^{\prime 2}$
\rightarrow Resolution scale z_{M} : resolvable $z<z_{M}$ and non-resolvable $z>z_{M}$ branchings
Dynamical $z_{M}=1-q_{0} / \mu^{\prime}$
q_{0} smallest emitted transverse momentum
[Hautmann, Keersmaekers, Lelek, van Kampen NuclPhysB (2019) 114795,1908.08524
$>$ Implicit in $P_{a b}^{R}(z)$ and $\Delta_{a}\left(\mu^{2}\right): \alpha_{s}\left(q_{\perp}\right)$
- $f_{a}\left(x, \mu^{2}\right)=\int \frac{d^{2} \mathbf{k}_{\perp}}{\pi} \mathcal{A}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right)$
at LO \rightarrow Catani-Marchesini-Webber

$\alpha_{s}(\mu)$ and $z_{M}=1 \rightarrow$ DGLAP

Effects of multiple branchings

PB last step is a toy model where
$\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\mathbf{q}_{\perp, n}\left(q_{\perp}\right.$ from last branching)
PB has $\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\sum_{i} \mathbf{q}_{\perp, i}$

Figure from [NuclPhysB (2019) 114795,1908.08524]

Effects of multiple branchings

PB last step is a toy model where
$\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\mathbf{q}_{\perp, n}\left(q_{\perp}\right.$ from last branching)
PB has $\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\sum_{i} \mathbf{q}_{\perp, i}$

- Intrinsic $k_{\perp, 0}$: Gaussian
$\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp, 0}, \mu_{0}^{2}\right)=$ $f_{a}\left(x, \mu_{0}^{2}\right) \times \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\mathbf{k}_{\perp, 0}^{2}}{2 \sigma^{2}}\right)$ with $q_{s}^{2}=\sigma^{2} / 2$. Here $q_{s}=0.5 \mathrm{GeV}$

Figure from [NuclPhysB (2019) 114795,1908.08524]

Effects of multiple branchings

PB last step is a toy model where
$\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\mathbf{q}_{\perp, n}\left(q_{\perp}\right.$ from last branching)
PB has $\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\sum_{i} \mathbf{q}_{\perp, i}$

- Intrinsic $k_{\perp, 0}$: Gaussian
$\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp, 0}, \mu_{0}^{2}\right)=$
$f_{a}\left(x, \mu_{0}^{2}\right) \times \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\mathbf{k}_{\perp, 0}^{2}}{2 \sigma^{2}}\right)$
with $q_{s}^{2}=\sigma^{2} / 2$. Here $q_{s}=0.5 \mathrm{GeV}$
- Gaussian function is clearly visible in "PB last step" \rightarrow partons that had no branching

Figure from [NuclPhysB (2019) 114795,1908.08524]

Effects of multiple branchings

Figure from [NuclPhysB (2019) 114795,1908.08524]

PB last step is a toy model where
$\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\mathbf{q}_{\perp, n}\left(q_{\perp}\right.$ from last branching)
PB has $\mathbf{k}_{\perp}=\mathbf{k}_{\perp, 0}-\sum_{i} \mathbf{q}_{\perp, i}$

- Intrinsic $k_{\perp, 0}$: Gaussian
$\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp, 0}, \mu_{0}^{2}\right)=$ $f_{a}\left(x, \mu_{0}^{2}\right) \times \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\mathbf{k}_{\perp, 0}^{2}}{2 \sigma^{2}}\right)$ with $q_{s}^{2}=\sigma^{2} / 2$. Here $q_{s}=0.5 \mathrm{GeV}$
- Gaussian function is clearly visible in "PB last step" \rightarrow partons that had no branching
- Very large bump visible around minimal emitted $q_{\perp}: q_{0}=1 \mathrm{GeV}$ for "PB last step"
- Many branchings smear out this bumps

Effects of q_{0} and q_{s}

Bumps matching between $\Delta_{a}(\mu) \tilde{\mathcal{A}}_{0}$ and evolution. Many branchings smooth out bumps

Effects of q_{0} and q_{s}
gluon, $x=0.001, \mu=100 \mathrm{GeV}$

gluon, $x=0.001, \mu=100 \mathrm{GeV}$

$$
z_{M}=1-q_{0} / \mu^{\prime}
$$

$$
\tilde{\mathcal{A}}_{0} \equiv
$$

$$
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp, 0}, \mu_{0}^{2}\right)=
$$

$$
f_{a}\left(x, \mu_{0}^{2}\right) \times
$$

$$
\frac{1}{q_{s} \sqrt{\pi}} \exp \left(-\frac{\mathbf{k}_{1,0}^{2}}{q_{s}^{2}}\right)
$$

- q_{0} minimal emitted q_{\perp}. When q_{0} is larger, resolvable region is smaller \rightarrow Less branchings
\rightarrow More partons with intrinsic k_{\perp}
- Bumps matching between $\Delta_{a}(\mu) \tilde{\mathcal{A}}_{0}$ and evolution. Many branchings smooth out bumps
- When q_{s} closer to $q_{0} \rightarrow$ smoother
- q_{s} only affects small k_{\perp}-region when $\mu \gg q_{s}$

Best value of q_{0}, q_{s} yet to be determined (fits with dyn. z_{M}). Choices of $q_{0}=1 \mathrm{GeV}, q_{s}=0.5 \mathrm{GeV}$ seem to give good results [Eur.Phys.J.C 80 (2020) 7, 598]

TMD Splitting functions

- Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- Goal of TMD Splitting Functions:
- Resummation in $\alpha_{s} \ln \frac{1}{x}$
- Exact kinematics in both k_{\perp} and x

TMD Splitting functions

- Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- Goal of TMD Splitting Functions:
- Resummation in $\alpha_{s} \ln \frac{1}{x}$
- Exact kinematics in both k_{\perp} and x
- $\tilde{P}_{q g}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right)$ originally calculated

Recently other splitting functions calculated [Gituliar, Hentschinski, Kutak JHEP 01 (2016) 181, 1511.08439], [Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]

TMD Splitting functions

- Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- Goal of TMD Splitting Functions:
- Resummation in $\alpha_{s} \ln \frac{1}{x}$
- Exact kinematics in both k_{\perp} and x
- $\tilde{P}_{q g}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right)$ originally calculated

Recently other splitting functions calculated [Gituliar, Hentschinski, Kutak JHEP 01 (2016) 181, 1511.08439], [Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]

- All TMD Splitting functions go to the DGLAP splitting functions for $k_{\perp} \rightarrow 0$

TMD Splitting functions

- Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- Goal of TMD Splitting Functions:
- Resummation in $\alpha_{s} \ln \frac{1}{x}$
- Exact kinematics in both k_{\perp} and x
- $\tilde{P}_{q g}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right)$ originally calculated

- Recently other splitting functions calculated [Gituliar, Hentschinski, Kutak JHEP 01 (2016) 181, 1511.08439], [Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]
- All TMD Splitting functions go to the DGLAP splitting functions for $k_{\perp} \rightarrow 0$
- PB uses DGLAP splitting functions, but those are not valid for small-x
$-\ln \mathrm{PB} k_{\perp}$ is known at every branching
\Rightarrow Goal of this work: extend PB by including TMD splitting functions

Evolution equations with TMD Splitting

functions

$$
P_{a b}(z) \rightarrow \tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right)
$$

Evolution equations with TMD Splitting

functions

$P_{a b}(z) \rightarrow \tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right)$
Sudakov form factor: probability of an evolution without any resolvable branchings

- Sudakov should depend on \mathbf{k}_{\perp}
- Should sum over all possible splittings \rightarrow integrate over all angles
$\Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right) \rightarrow$
$\Delta_{a}\left(\mu^{2}, \mathbf{k}_{\perp}^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z \frac{1}{\pi} \int_{0}^{\pi} d \phi \tilde{P}_{b a}^{R}\left(z, \mathbf{k}_{\perp},(1-z) \mu_{\perp}^{\prime}\right)\right)$

Evolution equations with TMD Splitting

$$
P_{a b}(z) \rightarrow \tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right)
$$

Sudakov form factor: probability of an evolution without any resolvable branchings

- Sudakov should depend on \mathbf{k}_{\perp}
- Should sum over all possible splittings \rightarrow integrate over all angles

$$
\begin{aligned}
& \Delta_{a}\left(\mu^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{R}(z)\right) \rightarrow \\
& \Delta_{a}\left(\mu^{2}, \mathbf{k}_{\perp}^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z \frac{1}{\pi} \int_{0}^{\pi} d \phi \tilde{P}_{b a}^{R}\left(z, \mathbf{k}_{\perp},(1-z) \mu_{\perp}^{\prime}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu^{2}\right) & =\Delta_{a}\left(\mu^{2}, \mathbf{k}_{\perp}\right) \tilde{\mathcal{A}}_{a}\left(x, \mathbf{k}_{\perp}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mu_{\perp}^{\prime}}{\pi \mu^{\prime 2}} \frac{\Delta_{a}\left(\mu^{2}, \mathbf{k}_{\perp}\right)}{\Delta_{a}\left(\mu^{\prime 2}, \mathbf{k}_{\perp}\right)} \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right) \nsucc \\
& \times \int_{x}^{z_{M}} d z \tilde{P}_{a b}^{R}\left(z, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime},(1-z) \mu_{\perp}^{\prime}\right) \tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, \mathbf{k}_{\perp}+(1-z) \mu_{\perp}^{\prime}, \mu^{\prime 2}\right)
\end{aligned}
$$

Monte Carlo implementation

$\tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right):$

- TMD splitting functions postitive definite
- No singularities in the PB phase space

Monte Carlo implementation

$\tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right):$

- TMD splitting functions postitive definite
- No singularities in the PB phase space
k_{\perp}-dependent Sudakov:
- In PB MC code, the scale should be generated according to the Sudakov form factor:

Generate $R=\Delta_{a}\left(\mu_{i}^{2}\right) / \Delta_{a}\left(\mu_{i-1}^{2}\right) \rightarrow$ find $\mu_{i}^{2}=\Delta_{a}^{-1}\left(R \Delta_{a}\left(\mu_{i-1}^{2}\right)\right)$

- Finding the inverse of Δ_{a} is non trivial!

Monte Carlo implementation

$\tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right):$

- TMD splitting functions postitive definite
- No singularities in the PB phase space
k_{\perp}-dependent Sudakov:
- In PB MC code, the scale should be generated according to the Sudakov form factor:

Generate $R=\Delta_{a}\left(\mu_{i}^{2}\right) / \Delta_{a}\left(\mu_{i-1}^{2}\right) \rightarrow$ find $\mu_{i}^{2}=\Delta_{a}^{-1}\left(R \Delta_{a}\left(\mu_{i-1}^{2}\right)\right)$

- Finding the inverse of Δ_{a} is non trivial!
- In the normal PB code a table is calculated \rightarrow interpolate to find μ_{i} With k_{\perp}-dependent Sudakov form factor, additional dimension \rightarrow extensive calculation

Monte Carlo implementation

$\tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right):$

- TMD splitting functions postitive definite
- No singularities in the PB phase space
k_{\perp}-dependent Sudakov:
- In PB MC code, the scale should be generated according to the Sudakov form factor:

Generate $R=\Delta_{a}\left(\mu_{i}^{2}\right) / \Delta_{a}\left(\mu_{i-1}^{2}\right) \rightarrow$ find $\mu_{i}^{2}=\Delta_{a}^{-1}\left(R \Delta_{a}\left(\mu_{i-1}^{2}\right)\right)$

- Finding the inverse of Δ_{a} is non trivial!
- In the normal PB code a table is calculated \rightarrow interpolate to find μ_{i} With k_{\perp}-dependent Sudakov form factor, additional dimension \rightarrow extensive calculation
- Used VETO-algorithm instead

VETO Algorithm

$\Delta_{a}\left(\mu^{2}, \mathbf{k}_{\perp}\right)=\exp \left(-\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} f_{a}\left(\mu^{\prime 2}, \mathbf{k}_{\perp}\right)\right)$ with
$f_{a}\left(\mu^{2}, \mathbf{k}_{\perp}\right)=\sum_{b} \int_{0}^{z_{M}} d z z \frac{1}{\pi} \int_{0}^{\pi} d \phi P_{b a}^{R}\left(z, \mathbf{k}_{\perp}, \mu_{\perp}^{\prime}\right)$
Find better function $g_{a}\left(\mu^{2}\right) \geq f_{a}\left(\mu^{2}, \mathbf{k}_{\perp}\right)$ for all μ.

1. Start with $j=0, \mu_{j=0}^{2}=\mu_{i-1}^{2}$
2. $\mathrm{j}=\mathrm{j}+1$. Select $\mu_{j}^{2}>\mu_{j-1}^{2}$ according to $R_{1}=\exp \left(-\int_{\mu_{j-1}^{2}}^{\mu_{j}^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} g_{a}\left(\mu^{\prime 2}\right)\right)$
3. if $f\left(\mu_{j}^{2}\right) / g\left(\mu_{j}^{2}\right) \leq R_{2}$ go to 2
4. else: μ_{j}^{2} is generated scale

VETO Algorithm

$\Delta_{a}\left(\mu^{2}, \mathbf{k}_{\perp}\right)=\exp \left(-\int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} f_{a}\left(\mu^{\prime 2}, \mathbf{k}_{\perp}\right)\right)$ with
$f_{a}\left(\mu^{2}, \mathbf{k}_{\perp}\right)=\sum_{b} \int_{0}^{z_{M}} d z z \frac{1}{\pi} \int_{0}^{\pi} d \phi P_{b a}^{R}\left(z, \mathbf{k}_{\perp}, \mu_{\perp}^{\prime}\right)$
Find better function $g_{a}\left(\mu^{2}\right) \geq f_{a}\left(\mu^{2}, \mathbf{k}_{\perp}\right)$ for all μ.

1. Start with $j=0, \mu_{j=0}^{2}=\mu_{i-1}^{2}$
2. $\mathrm{j}=\mathrm{j}+1$. Select $\mu_{j}^{2}>\mu_{j-1}^{2}$ according to $R_{1}=\exp \left(-\int_{\mu_{j-1}^{2}}^{\mu_{j}^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} g_{a}\left(\mu^{\prime 2}\right)\right)$
3. if $f\left(\mu_{j}^{2}\right) / g\left(\mu_{j}^{2}\right) \leq R_{2}$ go to 2
4. else: μ_{j}^{2} is generated scale

Usually g is chosen to have an known inverse function. We chose $g_{a}\left(\mu^{2}\right)=\sum_{b} \int_{0}^{z_{M}} d z z\left(P_{b a}^{R}(z)+h_{b a}(z)\right)$. No known inverse, but:

- Close to $f_{a} \rightarrow$ efficient
\rightarrow No k_{\perp}-dependence \rightarrow table

Integrated TMDs

We studied effects of TMD Splitting functions on the evolution. No fits has been done yet:

- Not yet ready for phenomenology

Integrated TMDs

We studied effects of TMD Splitting functions on the evolution. No fits has been done yet:

- Not yet ready for phenomenology Implementation with:
- PB method (LO)
- PB with TMD Splitting functions

Integrated TMDs

We studied effects of TMD Splitting functions on the evolution. No fits has been done yet:

- Not yet ready for phenomenology Implementation with:
- PB method (LO)
- PB with TMD Splitting functions
- Effects are small for large $\mathrm{x} \rightarrow$ reasonable since
$\tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right) \xrightarrow[k_{\perp} \rightarrow 0]{ }$ $P_{a b}(z)$
- PB is capable of handling TMD P and TMD sudakov

Integrated TMDs

We studied effects of TMD Splitting functions on the evolution.
No fits has been done yet:

- Not yet ready for phenomenology Implementation with:
- PB method (LO)
- PB with TMD Splitting functions
- Effects are small for large $\mathrm{x} \rightarrow$ reasonable since
$\tilde{P}_{a b}\left(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp}\right) \xrightarrow[k_{\perp} \rightarrow 0]{ }$
$P_{a b}(z)$
- PB is capable of handling TMD P and TMD sudakov

TMDs vs \mathbf{k}_{\perp}

- PB method (LO)
- PB with TMD Splitting functions
- Whole \mathbf{k}_{\perp}-region is affected

TMDs vs k

- PB method (LO)
- PB with TMD Splitting functions
- Whole \mathbf{k}_{\perp}-region is affected

TMDs vs k

Summary and outlook

- I presented a parton branching algorithm for space-like parton evolution with k_{\perp}-dependent splitting functions
$>$ The splitting functions are a (positive-definite) $k_{T} \neq 0$ continuation of the LO DGLAP splitting functions originally obtained from high-energy factorization
$>k_{\perp}$-dependent splittings affect both real emission and Sudakov form factors
They have been implemented in the PB-TMD Monte Carlo code uPDFevolv using the veto algorithm
- New code is working and produces both collinear and TMD parton distributions paper in preparation
- Ready to do phenomenology:

Perform fits to DIS and DY data to determine nonperturbative TMDs
$>$ Use them to make PB-TMD predictions for LHC and EIC processes including for the first time the effects of TMD splittings

