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Uv Motivation

Sorpr(wy ke, 1) ) . ) .
P> Collinear factorization is commonly used

P> Some classes of processes require more
general scheme

P Factorization in partonic cross-section and
transverse momentum dependent PDFs
(TMDs)

Forpalaa k2,13

P TMDs much less known than PDFs at present — future experimental programs

P TMDs from Parton Branching (PB) method: Can be used in Monte Carlo events generators
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H- Angular ordering

| 4 Angular ordering in initial state radiation:

Oi1 >0, = qy 41> 2,41,

withq, ;, = f%z’l rescaled transverse momentum of emitted
a parton
Inlimit z—1, this gives: ¢, ;.1 > q, ;
q




H- Angular ordering

| 4 Angular ordering in initial state radiation:
Oi1 >0, = qy 41> 2,41,

withq, ;, = ffz’l rescaled transverse momentum of emitted
a parton
Inlimit z—1, this gives: ¢, ;.1 > q, ;
E. g}q ‘ — Associate evolution scale 4t = q, ;
q




H- Angular ordering

| 4 Angular ordering in initial state radiation:

Oi1 >0, = qy 41> 2,41,

= a1 .
with g, ;, = ﬁ rescaled transverse momentum of emitted
’ —Z

parton

Inlimit z—1, this gives: ¢, ;.1 > g, ;
(¢ Pt i
E., b, ‘ o — Associate evolution scale 4t = q, ;

q Widely used concept, examples:

E;
‘ M a4 P PDFs: Catani-Marchesini-Webber (CMW)
""" P Event generator: HERWIG
» To obtain TMDs: PB




U- lterative evolution equations

> be(z): (real emission part of) Splitting functions: Probabilty that a branching will happen

b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

P Sudakov form factor:

Aa(;ﬂ):exp< ]“ d“2 ]ZMdzzPlﬁ(zO

Interpretation: probability of an evolution without any resolvable branchings
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P Sudakov form factor:
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Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279)]
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lterative evolution equations
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lterative evolution equations

> be(z): (real emission part of) Splitting functions: Probabilty that a branching will happen
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PB calculates k | from every
b,k +a) branching:

Ko Ko ky :kL,O_Zi L,




lterative evolution equations

> be(z): (real emission part of) Splitting functions: Probabilty that a branching will happen

b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

P Sudakov form factor:
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PB calculates k | from every

b,k +a) branching:
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Can be solved with MC methods. ‘



Uv Parton Branching equations

Parton branching equations for TMDs:

a2 A, (p?)
A, (u2)A, (2, ko, pd) +Z/ ﬂulfiA (:,2 O(u? — W2)O(u'? — u2)x
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P AO condition: g2 = (1 — 2)2pu’2




U- Parton Branching equations

Parton branching equations for TMDs:

- - A’ A, (p?
Ayl ) = 8020 Ao k) + 3 [ T Do 07 — )00 )

x [ @B @A K+ (12

P AO condition: g2 = (1 — 2)2pu’2

P Resolution scale 2, resolvable z < z,, and
non-resolvable z > z,, branchings
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U- Parton Branching equations

Parton branching equations for TMDs:

; ; A,
Ayl ) = 8020 Ao k) + 3 [ T Do 07 — )00 )

X/ dZP{I})(z)ﬁb( ?ki+(1_z)ﬂivﬂ/2)

xT
z

:| Resolvable region
l\zble Tegion
P AO condition: g2 = (1 — 2)2pu’2 y
SAL
L—aq/p ="
P Resolution scale 2, resolvable z < z,, and

non-resolvable z > z,, branchings
Dynamical z,, = 1 — qo /i’ 2
g smallest emitted transverse momentum

[Hautmann, Keersmaekers, Lelek, van Kampen NuclPhysB (2019) 114795,1908.08524 L= a/m
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Parton Branching equations

Parton branching equations for TMDs:

- o d?p A7)
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:| Resolvable region
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P AO condition: g2 = (1 — 2)2pu’2 it
T—a/n
P Resolution scale Z - resolvable z < z,, and
non-resolvable z > z,, branchings
Dynamical z,, = 1 — qo /i’ 2
g smallest emitted transverse momentum
[Hautmann, Keersmaekers, Lelek, van Kampen NuclPhysB (2019) 114795,1908.08524 L= a/m
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U- Parton Branching equations

Parton branching equations for TMDs:
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P Resolution scale 2, resolvable z < z,, and
non-resolvable z > z,, branchings
Dynamical z,, = 1 — qo /i’ 2
g smallest emitted transverse momentum
[Hautmann, Keersmaekers, Lelek, van Kampen NuclPhysB (2019) 114795,1908.08524 L=/
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U- Effects of multiple branchings

XA(x.K 4)

gluon, x = 0.001, u = 100 GeV

10%e i ry PB last step is a toy model where
E PB =| .
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Figure from [NuclPhysB (2019) 114795,1908.08524]
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xA(x,kl,p)

Effects of multiple branchings

gluon, x = 0.001, u = 100 GeV
E S RAT e PB last step is a toy model where

PB .
Palaststen | k, =k, o —4ay 5 (g fromlastbranching)
PBhask =k, o—> 4. ;
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Figure from [NuclPhysB (2019) 114795,1908.08524]
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XA(X,K )

Effects of multiple branchings

gluon, x = 0.001, u = 100 GeV
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Figure from [NuclPhysB (2019) 114795,1908.08524]

TMDplotter 2.2.0

PB last step is a toy model where
k, =k, o —4ay 5 (g fromlastbranching)
PBhask, =k g _ZiqL,i
P Intrinsic k| o: Gaussian
‘Aa(xr kL,O: N’%) =
2
2 1 Ko
fal@, 1g) x 575 exp (—zaz>
with g2 = 02 /2. Here q,=0.5GeV

P> Gaussian function is clearly visible in
"PB last step”— partons that had no branching
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XA(X,K )

Effects of multiple branchings

gluon, x = 0.001, u = 100 GeV
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. s | 4 Very large bump visible around minimal
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Figure from [NuclPhysB (2019) 114795,1908.08524]
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XAGK 1)

Effects of g, and g,

gluon, x = 0.001, u = 100 GeV
T
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TMDplotter 2.2.0
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| 4 g minimal emitted g | . When g, is larger, resolvable region is smaller — Less branchings

— More partons with intrinsic k |

| 4 Bumps matching between Aa(,u)jzo and evolution. Many branchings smooth out bumps
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Effects of g, and g,

gluon, x = 0.001, u = 100 GeV gluon, x = 0.001, u = 100 GeV
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g minimal emitted g | . When g, is larger, resolvable region is smaller — Less branchings
— More partons with intrinsic k |

Bumps matching between Aa(,u)/zo and evolution. Many branchings smooth out bumps
When g closer to g — smoother
q only affects small k| -region when 11 > q

Best value of q(), g yet to be determined (fits with dyn. z /). Choices of gy=1 GeV, q;=0.5 GeV
seem to give good results [Eurpr

C 80 (2020) 7, 598]



Hv TMD Splitting functions

> Concept from high-energy factorization (catani, Haumann NPB427 (1994) 475524, hep-ph/9405388]

P Goal of TMD Splitting Functions:

P Resummation in agln é
P Exact kinematics in both k, and x
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| 4 Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
P Goal of TMD Splitting Functions:

P Resummation in agln é
P Exact kinematics in both k, and x

» P, (2 .k, ,q,)orginall calculated

P> Recently other splitting functions calculated (Giuiiar Hentschinski, Kutak JHEP 01 (2016) 181, 151108439

[Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]
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Hv TMD Splitting functions

v

Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]

v

Goal of TMD Splitting Functions:

P Resummation in agln é
P Exact kinematics in both k, and x

» P,,(zk,,q,) orginally calculated

P> Recently other splitting functions calculated (Giuiiar Hentschinski, Kutak JHEP 01 (2016) 181, 151108439

[Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]

P> All TMD Splitting functions go to the DGLAP splitting functions for k, —0

» PBuses DGLAP splitting functions, but those are not valid for small-x

» InPB k | is known at every branching

= Goal of this work: extend PB by including TMD splitting functions
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H, Evolution equations with TMD Splitting
functions

P,y (2) = Py(2,k;,4q,)

a a




H, Evolution equations with TMD Splitting
functions

P,y (2) = P,y (2,k ,q,)

Sudakov form factor: probability of an evolution without any resolvable branchings
P Sudakov should depend on k
P> Should sum over all possible splittings — integrate over all angles

Aa(/‘LQ) = exp (72 % dHQ fZA{dZZI_)]ul(Z)) -

A, (p?,k2) —exp( > f” d““z“dzzlf d(,be’r‘) z,k .(:172)/1‘/))
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H, Evolution equations with TMD Splitting
functions

Puy(2) = P2k, a)
Sudakov form factor: probability of an evolution without any resolvable branchings
P Sudakov should depend on k

P> Should sum over all possible splittings — integrate over all angles
A (1) =exp< >, f” N T szf,(z)) -

A, (p?,K2) =exp (—Zb “2 d“Q szdzz 1[ d(,bP” (z,k .(172)/1‘/))

JuZ ba

- ~ d?u A, ‘H
. (2,0, 52) = A (12, >Aa<x,kwa>+2/ L

w2 A, (p'?

ew —p?)O(u"? — u3)

ZM ~ T
></ dzPE (z,k, + (1 — 2)p!, (1 — 2)p/ ) Ap (=, k, + (1 — 2)p!, p'2)
- - z
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H- Monte Carlo implementation

Pab('zv kJ_v qJ_>:
» ™™D splitting functions postitive definite

» No singularities in the PB phase space




Hv Monte Carlo implementation

Poy(z,k ,q,):
» ™™D splitting functions postitive definite
» No singularities in the PB phase space
k | -dependent Sudakov:

P In PB MC code, the scale should be generated according to the Sudakov form factor:
Generate R = A, (u7)/A, (17 1) = find pf = AN (RA, (17 1))

P Finding the inverse of A is non triviall
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» ™™D splitting functions postitive definite
» No singularities in the PB phase space
k | -dependent Sudakov:

P In PB MC code, the scale should be generated according to the Sudakov form factor:
Generate R = A, (u7)/A, (17 1) = find pf = AN (RA, (17 1))

P Finding the inverse of A is non triviall

P In the normal PB code a table is calculated — interpolate to find 1t;
With k| -dependent Sudakov form factor, additional dimension — extensive calculation
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Hv Monte Carlo implementation

Poy(z,k ,q,):
» ™™D splitting functions postitive definite
» No singularities in the PB phase space
k | -dependent Sudakov:

P In PB MC code, the scale should be generated according to the Sudakov form factor:
Generate R = A, (117)/ Ao (17 1) = find uf = AN (RA, (17 1))

P Finding the inverse of A is non triviall

P In the normal PB code a table is calculated — interpolate to find 1t;
With k| -dependent Sudakov form factor, additional dimension — extensive calculation

» Used VETO-algorithm instead

D e



> VETO Algorithm ...

Aa(/*’“27 kL) = exp <_ fﬂ duz f ( /27 kL)) with
fa(p? k) =32, [T dz - 2 T doPf (k1))

Find better function g,, (u?) > f, (1?2, k) for all u.

1. Startwith j = 0, p?_o = p? 4

2
2. j=j+1. Select u,J > /.LJ , accordingto Ry = exp( f;; du ga(u’2))
J

- “/2

1]

it f(13)/9(n3) < Rygoto2

4. else: pJ? is generated scale

s e



> VETO Algorithm .......

Aa(/*’“27 kL) = exp <_ fﬂ duz f ( /27 kL)) with
fa(p? k) =32, [T dz - 2 T doPf (k1))

Find better function g,, (u?) > f, (1?2, k) for all u.

1. Startwith 7 = 0, u?zo =pu?

2
2. j=j+1. Select u,J > /.LJ , accordingto R, = exp( f;; du’ ga(,u’2))
J

- “/2

1]

it f(13)/9(n3) < Rygoto2
4. else: pJ? is generated scale

Usually g is chosen to have an known inverse function. We chose
9.1 =3, _[OZM dz z (P (2) + hy,(2)). No known inverse, but:

P Closeto f, — efficient

P No k| -dependence — table

s e



Integrated TMDs
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gluon, p = 100 GeV, k, from 0 up to 10000000000 GeV
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collinear P
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We studied effects of TMD Splitting
functions on the evolution. 102
No fits has been done yet:

T
Ll
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Implementation with:
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P Effects are small for large x — E R
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Integrated TMDs

down, p = 100 GeV, k( from 0 up to 10000000000 GeV

= 0
We studied effects of TMD Splitting Ea colinear P E
functions on the evolution. = ]
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TMDs vs k |

gluon, x = 0.001, u = 100 GeV
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TMDs vs k |

down, x = 0.001, u = 100 GeV
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PB method (LO)
PB with TMD Splitting functions

Whole k | -region is affected

With TMD P, bumps in distribution
are also visible

Effects from g and q 4 in TMD P
are similar as in collinear case
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U— Summary and outlook

> | presented a parton branching algorithm for space-like parton evolution with
k | -dependent splitting functions

P> The splitting functions are a (positive-definite) ko # 0 continuation of the LO
DGLAP splitting functions originally obtained from high-energy factorization

k | -dependent splittings affect both real emission and Sudakov form factors

vy

They have been implemented in the PB-TMD Monte Carlo code uPDFevolv using
the veto algorithm

v

New code is working and produces both collinear and TMD parton distributions -
paper in preparation

v

Ready to do phenomenology:

P Perform fits to DIS and DY data to determine nonperturbative TMDs
P Use them to make PB-TMD predictions for LHC and EIC processes
including for the first time the effects of TMD splittings

D e
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