Transverse momentum dependent splitting functions in Parton Branching based evolution equations

REF workshop 2020

L. Keersmaekers¹, F. Hautmann¹², M. Hentschinski³, H. Jung⁴, A. Kusina⁵, K. Kutak⁵, A. Lelek¹

University of Antwerp, ² University of Oxford, ³ Universidad de las Americas Puebla, ⁴ DESY, ⁵ IFJ PAN

Universiteit Antwerpen

Motivation

- Collinear factorization is commonly used
- Some classes of processes require more general scheme
- Factorization in partonic cross-section and transverse momentum dependent PDFs (TMDs)
- TMDs much less known than PDFs at present \rightarrow future experimental programs
- TMDs from Parton Branching (PB) method: Can be used in Monte Carlo events generators

Angular ordering

Angular ordering in initial state radiation:

 $\Theta_{i+1} > \Theta_i \to \bar{q}_{\perp,i+1} > z_i \bar{q}_{\perp,i}$

with $\bar{q}_{\perp,i} = \frac{q_{\perp,i}}{1-z_i}$ rescaled transverse momentum of emitted parton

In limit zightarrow1, this gives: $ar{q}_{\perp,i+1} > ar{q}_{\perp,i}$

Angular ordering

Angular ordering in initial state radiation:

 $\Theta_{i+1} > \Theta_i \to \bar{q}_{\perp,i+1} > z_i \bar{q}_{\perp,i}$

with $\bar{q}_{\perp,i} = \frac{q_{\perp,i}}{1-z_i}$ rescaled transverse momentum of emitted parton

In limit zightarrow1, this gives: $ar{q}_{\perp,i+1} > ar{q}_{\perp,i}$

ightarrow Associate evolution scale $\mu = ar{q}_{\perp,i}$

Angular ordering

Angular ordering in initial state radiation:

 $\Theta_{i+1} > \Theta_i \to \bar{q}_{\perp,i+1} > z_i \bar{q}_{\perp,i}$

with $\bar{q}_{\perp,i} = \frac{q_{\perp,i}}{1-z_i}$ rescaled transverse momentum of emitted parton

In limit zightarrow1, this gives: $ar{q}_{ot,i+1} > ar{q}_{ot,i}$

ightarrow Associate evolution scale $\mu=ar{q}_{\perp,\,i}$

Widely used concept, examples:

- PDFs: Catani-Marchesini-Webber (CMW)
- Event generator: HERWIG
 - To obtain TMDs: PB

 $\blacktriangleright P^R_{ab}(z): \text{ (real emission part of) Splitting functions: Probability that a branching will happen b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b$

Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz\,z\,P_{ba}^{R}(z)\right)$$

Interpretation: probability of an evolution without any resolvable branchings

P^R_{ab}(z): (real emission part of) Splitting functions: Probability that a branching will happen b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz\,z\,P_{ba}^{R}(z)\right)$$

Interpretation: probability of an evolution without any resolvable branchings

P^R_{ab}(z): (real emission part of) Splitting functions: Probability that a branching will happen b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z \ P_{ba}^{R}(z)\right)$$

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

	а, к
μ_0	L

P^R_{ab}(z): (real emission part of) Splitting functions: Probability that a branching will happen b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z \ P_{ba}^{R}(z)\right)$$

Interpretation: probability of an evolution without any resolvable branchings

P^R_{ab}(z): (real emission part of) Splitting functions: Probability that a branching will happen b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z \ P_{ba}^{R}(z)\right)$$

Interpretation: probability of an evolution without any resolvable branchings

 \blacktriangleright $P^R_{ab}(z)$: (real emission part of) Splitting functions: Probability that a branching will happen b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z \ P_{ba}^{R}(z)\right)$$

Interpretation: probability of an evolution without any resolvable branchings

$$\begin{split} \tilde{\mathcal{A}}_a(x,\mathbf{k}_{\perp},\mu^2) = \Delta_a(\mu^2)\tilde{\mathcal{A}}_a(x,\mathbf{k}_{\perp},\mu_0^2) + \sum_b \int \frac{d^2\mu'_{\perp}}{\pi\mu'^2} \Theta(\mu^2-\mu'^2) \Theta(\mu'^2-\mu_0^2) \frac{\Delta_a(\mu^2)}{\Delta_a(\mu'^2)} \times \\ \times \int_x^{z_M} dz P^R_{ab}(z) \Delta_b(\mu'^2) \tilde{\mathcal{A}}_b(\frac{x}{z},\mathbf{k}_{\perp}+(1-z)\mu'_{\perp},\mu_0^2) + \dots \end{split}$$

$$\mathbf{k}_{\perp} = \mathbf{k}_{\perp,0} - \sum_i \mathbf{q}_{\perp,i}$$

 \blacktriangleright $P^R_{ab}(z)$: (real emission part of) Splitting functions: Probability that a branching will happen b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z \ P_{ba}^{R}(z)\right)$$

Interpretation: probability of an evolution without any resolvable branchings

Iterative form of the PB evolution equation: [Hautmann, Jung, Lelek, Radescu, Zlebcik JHEP 01 (2018) 070, 1708.03279]

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,\mathbf{k}_{\perp},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,\mathbf{k}_{\perp},\mu_{0}^{2}) + \sum_{b}\int\frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}}\Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2})\frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})}\times\\ &\times\int_{x}^{z_{M}}dzP_{ab}^{R}(z)\Delta_{b}(\mu'^{2})\tilde{\mathcal{A}}_{b}(\frac{x}{z},\mathbf{k}_{\perp}+(1-z)\mu_{\perp}',\mu_{0}^{2})+\ldots \end{split}$$

$$\mathbf{k}_{\perp} = \mathbf{k}_{\perp,0} - \sum_i \mathbf{q}_{\perp,i}$$

Can be solved with MC methods.

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_a(x,\mathbf{k}_{\perp},\mu^2) &= \Delta_a(\mu^2) \tilde{\mathcal{A}}_a(x,\mathbf{k}_{\perp},\mu_0^2) + \sum_b \int \frac{d^2\mu'_{\perp}}{\pi\mu'^2} \frac{\Delta_a(\mu'^2)}{\Delta_a(\mu'^2)} \Theta(\mu^2 - \mu'^2) \Theta(\mu'^2 - \mu_0^2) \times \\ &\times \int_x^{z_M} dz P_{ab}^R(z) \tilde{\mathcal{A}}_b(\frac{x}{z},\mathbf{k}_{\perp} + (1-z)\mu'_{\perp},\mu'^2) \end{split}$$

 $\blacktriangleright~$ AO condition: $\mathbf{q}_{\perp}^2 = (1-z)^2 \mu'^2$

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_a(x,\mathbf{k}_{\perp},\mu^2) &= \Delta_a(\mu^2)\tilde{\mathcal{A}}_a(x,\mathbf{k}_{\perp},\mu_0^2) + \sum_b \int \frac{d^2\mu'_{\perp}}{\pi\mu'^2} \frac{\Delta_a(\mu^2)}{\Delta_a(\mu'^2)} \Theta(\mu^2 - \mu'^2) \Theta(\mu'^2 - \mu_0^2) \times \\ & \times \int_x^{z_M} dz P^R_{ab}(z) \tilde{\mathcal{A}}_b(\frac{x}{z},\mathbf{k}_{\perp} + (1-z)\mu'_{\perp},\mu'^2) \end{split}$$

 $\blacktriangleright~$ AO condition: $\mathbf{q}_{\perp}^2 = (1-z)^2 \mu'^2$

Resolution scale z_M : resolvable $z < z_M$ and non-resolvable $z > z_M$ branchings

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,\mathbf{k}_{\perp},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,\mathbf{k}_{\perp},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z)\tilde{\mathcal{A}}_{b}(\frac{x}{z},\mathbf{k}_{\perp}+(1-z)\mu_{\perp}',\mu'^{2}) \end{split}$$

$$\text{AO condition: } \mathbf{q}_{\perp}^{2} &= (1-z)^{2}\mu'^{2} \\ \text{Resolution scale } z_{M} \text{: resolvable } z < z_{M} \text{ and } \\ \text{non-resolvable } z > z_{M} \text{ branchings} \\ \text{Dynamical } z_{M} &= 1-q_{0}/\mu' \\ \mathbf{q}_{0} \text{ smallest emitted transverse momentum} \\ \text{[Hautmann, Keersmaekers, Lelek, van Kampen NuclPhysB (2019) 114795, 1908.08524]} \begin{array}{c} 1-q_{0}/\mu_{0} \\ \mathbf{q}_{\perp} \\ \mathbf{q}_{0} \\ \mathbf{q}_{\perp} \\ \mathbf{q}_{\perp}$$

μ'

Li

 $q_0 |_{\frac{q_0}{1-x}} \mu_0$

μ'

0

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,\mathbf{k}_{\perp},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,\mathbf{k}_{\perp},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z)\tilde{\mathcal{A}}_{b}(\frac{x}{z},\mathbf{k}_{\perp}+(1-z)\mu_{\perp}',\mu'^{2}) \end{split}$$

$$\text{AO condition: } \mathbf{q}_{\perp}^{2} &= (1-z)^{2}\mu'^{2} \\ \text{AO condition scale } z_{M} \text{: resolvable } z < z_{M} \text{ and } \\ \text{non-resolvable } z > z_{M} \text{ branchings} \\ \text{Dynamical } z_{M} &= 1-q_{0}/\mu' \\ \mathbf{q}_{0} \text{ smallest emitted transverse momentum} \\ \text{[Hautmann, Keersmackers, Lelek, van Kampen NuclPhysB (2019) 114795, 1908.08524 \ 1-q_{0}/\mu_{u}} \\ \text{Implicit in } P_{ab}^{R}(z) \text{ and } \Delta_{a}(\mu^{2}) \text{: } \alpha_{s}(q_{\perp}) \\ \end{array}$$

μ

Parton Branching equations

Parton branching equations for TMDs:

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,\mathbf{k}_{\perp},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,\mathbf{k}_{\perp},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z)\tilde{\mathcal{A}}_{b}(\frac{x}{z},\mathbf{k}_{\perp}+(1-z)\mu_{\perp}',\mu'^{2}) \end{split}$$

$$\text{AO condition: } \mathbf{q}_{\perp}^{2} &= (1-z)^{2}\mu'^{2} \\ \text{Resolution scale } z_{M}: \text{ resolvable } z < z_{M} \text{ and } \\ \text{non-resolvable } z > z_{M} \text{ branchings} \\ \text{Dynamical } z_{M} &= 1-q_{0}/\mu' \\ \mathbf{q}_{0} \text{ smallest emitted transverse momentum} \\ \text{[Hautman, Keersmackers, Lelek, van Kampen NuclPhysB (2019) 114795, 1908.08524 \ 1-q_{0}/\mu_{u}} \\ \text{Implicit in } P_{ab}^{R}(z) \text{ and } \Delta_{a}(\mu^{2}): \alpha_{s}(q_{\perp}) \\ \text{Implicit in } P_{ab}^{R}(z) \text{ and } \Delta_{a}(\mu^{2}): \alpha_{s}(q_{\perp}) \\ \text{Implicit in } P_{ab}(z) = \int \frac{d^{2}\mathbf{k}_{\perp}}{\pi} \mathcal{A}_{a}(x,\mathbf{k}_{\perp},\mu^{2}) \\ \text{ at } \text{LO} \rightarrow \text{ Catani-Marchesini-Webber} \\ \alpha_{s}(\mu) \text{ and } z_{M} = 1 \rightarrow \text{DGLAP} \\ \end{split}$$

PB last step is a toy model where $\mathbf{k}_{\perp} = \mathbf{k}_{\perp,0} - \mathbf{q}_{\perp,n} \ (q_{\perp} \text{ from last branching})$ PB has $\mathbf{k}_{\perp} = \mathbf{k}_{\perp,0} - \sum_{i} \mathbf{q}_{\perp,i}$

Figure from [NuclPhysB (2019) 114795,1908.08524]

 $\begin{array}{l} \mathsf{PB} \text{ last step is a toy model where} \\ \mathbf{k}_{\perp} = \mathbf{k}_{\perp,0} - \mathbf{q}_{\perp,n} \left(q_{\perp} \text{ from last branching} \right) \\ \mathsf{PB} \text{ has } \mathbf{k}_{\perp} = \mathbf{k}_{\perp,0} - \sum_{i} \mathbf{q}_{\perp,i} \\ \bullet \quad \text{Intrinsic } k_{\perp,0} \text{: Gaussian} \\ \tilde{\mathcal{A}}_{a}(x, \mathbf{k}_{\perp,0}, \mu_{0}^{2}) = \\ f_{a}(x, \mu_{0}^{2}) \times \frac{1}{\sigma\sqrt{2\pi}} \exp \left(-\frac{\mathbf{k}_{\perp,0}^{2}}{2\sigma^{2}} \right) \\ \text{ with } q_{s}^{2} = \sigma^{2}/2 \text{. Here } q_{s} \text{=} 0.5 \text{GeV} \end{array}$

Figure from [NuclPhysB (2019) 114795,1908.08524]

 $\begin{array}{l} \mathsf{PB} \text{ last step is a toy model where} \\ \mathbf{k}_{\perp} = \mathbf{k}_{\perp,0} - \mathbf{q}_{\perp,n} \; (q_{\perp} \text{ from last branching}) \\ \mathsf{PB} \text{ has } \mathbf{k}_{\perp} = \mathbf{k}_{\perp,0} - \sum_{i} \mathbf{q}_{\perp,i} \\ \bullet \quad \text{Intrinsic } k_{\perp,0} \text{: Gaussian} \\ \tilde{\mathcal{A}}_{a}(x, \mathbf{k}_{\perp,0}, \mu_{0}^{2}) = \\ f_{a}(x, \mu_{0}^{2}) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\mathbf{k}_{\perp,0}^{2}}{2\sigma^{2}}\right) \\ \text{ with } q_{s}^{2} = \sigma^{2}/2 \text{. Here } q_{s} \text{=} 0.5 \text{GeV} \\ \bullet \quad \text{Gaussian function is clearly visible in} \end{array}$

"PB last step" -> partons that had no branching

Figure from [NuclPhysB (2019) 114795,1908.08524]

Figure from [NuclPhysB (2019) 114795,1908.08524]

PB last step is a toy model where $\begin{aligned} \mathbf{k}_{\perp} &= \mathbf{k}_{\perp,0} - \mathbf{q}_{\perp,n} \; (q_{\perp} \text{ from last branching}) \\ \text{PB has } \mathbf{k}_{\perp} &= \mathbf{k}_{\perp,0} - \sum_{i} \mathbf{q}_{\perp,i} \end{aligned}$ $\blacktriangleright \quad \text{Intrinsic } k_{\perp,0} \text{: Gaussian} \\ \tilde{\mathcal{A}}_{a}(x, \mathbf{k}_{\perp,0}, \mu_{0}^{2}) &= \\ f_{a}(x, \mu_{0}^{2}) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\mathbf{k}_{\perp,0}^{2}}{2\sigma^{2}}\right) \\ \text{with } q_{s}^{2} &= \sigma^{2}/2 \text{. Here } q_{s} \text{=0.5GeV} \end{aligned}$

- Gaussian function is clearly visible in "PB last step" \rightarrow partons that had no branching
- Very large bump visible around minimal emitted q_⊥: q₀=1 GeV for "PB last step"
- Many branchings smear out this bumps

• q_0 minimal emitted q_\perp . When q_0 is larger, resolvable region is smaller \rightarrow Less branchings \rightarrow More partons with intrinsic k_\perp

Bumps matching between $\Delta_a(\mu) ilde{\mathcal{A}}_0$ and evolution. Many branchings smooth out bumps

• q_0 minimal emitted q_\perp . When q_0 is larger, resolvable region is smaller \rightarrow Less branchings \rightarrow More partons with intrinsic k_\perp

Bumps matching between $\Delta_a(\mu) ilde{\mathcal{A}}_0$ and evolution. Many branchings smooth out bumps

- When q_s closer to q₀ → smoother
- $lacksim q_s$ only affects small k_\perp -region when $\mu \gg q_s$
- Best value of q_0 , q_s yet to be determined (fits with dyn. z_M). Choices of q_0 =1 GeV, q_s =0.5 GeV seem to give good results [Eur.Phys.J.C 80 (2020) 7, 598]

- Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- Goal of TMD Splitting Functions:
 - Resummation in $\alpha_s \ln \frac{1}{x}$
 - Exact kinematics in both k_{\perp} and x

+ . . .

- Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- Goal of TMD Splitting Functions:
 - Resummation in $\alpha_s \ln \frac{1}{x}$
 - Exact kinematics in both k_{\perp} and x
- $\blacktriangleright~\tilde{P}_{qg}(z,{\bf k}_{\perp},{\bf q}_{\perp})$ originally calculated

Recently other splitting functions calculated [Gituliar, Hentschinski, Kutak JHEP 01 (2016) 181, 1511.08439], [Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]

- Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- Goal of TMD Splitting Functions:
 - Resummation in $\alpha_s \ln \frac{1}{x}$
 - Exact kinematics in both k_{\perp} and x
- $\blacktriangleright~\tilde{P}_{qg}(z,{\bf k}_{\perp},{\bf q}_{\perp})$ originally calculated

Recently other splitting functions calculated [Gituliar, Hentschinski, Kutak JHEP 01 (2016) 181, 1511.08439], [Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]

All TMD Splitting functions go to the DGLAP splitting functions for $k_\perp o 0$

- Concept from high-energy factorization [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- Goal of TMD Splitting Functions:
 - Resummation in α_s ln 1/x
 Exact kinematics in both k_⊥ and x
- $\blacktriangleright~\tilde{P}_{qg}(z,{\bf k}_{\perp},{\bf q}_{\perp})$ originally calculated

Recently other splitting functions calculated [Gituliar, Hentschinski, Kutak JHEP 01 (2016) 181, 1511.08439], [Hentschinski, Kusina, Kutak, Serino EPJC 78 (2018) 174, 1711.04587]

- All TMD Splitting functions go to the DGLAP splitting functions for $k_\perp
 ightarrow 0$
- PB uses DGLAP splitting functions, but those are not valid for small-x
- ln PB k_{\perp} is known at every branching
 - \Rightarrow Goal of this work: extend PB by including TMD splitting functions

Evolution equations with TMD Splitting functions

 $P_{ab}(z) \rightarrow \tilde{P}_{ab}(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp})$

Evolution equations with TMD Splitting functions

$$P_{ab}(z) \rightarrow \tilde{P}_{ab}(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp})$$

Sudakov form factor: probability of an evolution without any resolvable branchings

Sudakov should depend on k₁

Should sum over all possible splittings \rightarrow integrate over all angles

$$\begin{split} \Delta_{a}(\mu^{2}) &= \exp\left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{z_{M}} dz \ z \ P_{ba}^{R}(z)\right) \ \rightarrow \\ \Delta_{a}(\mu^{2},\mathbf{k}_{\perp}^{2}) &= \exp\left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{z_{M}} dz \ z \ \frac{1}{\pi} \int_{0}^{\pi} d\phi \tilde{P}_{ba}^{R}\left(z,\mathbf{k}_{\perp},(1-z)\mu_{\perp}'\right)\right) \end{split}$$

Evolution equations with TMD Splitting functions

$$P_{ab}(z) \rightarrow \tilde{P}_{ab}(z, \mathbf{k}_{\perp}, \mathbf{q}_{\perp})$$

Sudakov form factor: probability of an evolution without any resolvable branchings

Sudakov should depend on \mathbf{k}_{\perp}

Should sum over all possible splittings \rightarrow integrate over all angles

$$\begin{split} \Delta_{a}(\mu^{2}) &= \exp\left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{z_{M}} dz \, z \, P_{ba}^{R}(z)\right) \to \\ \Delta_{a}(\mu^{2},\mathbf{k}_{\perp}^{2}) &= \exp\left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{z_{M}} dz \, z \, \frac{1}{\pi} \int_{0}^{\pi} d\phi \tilde{P}_{ba}^{R}(z,\mathbf{k}_{\perp},(1-z)\mu_{\perp}')\right) \end{split}$$

$$\begin{split} \tilde{\mathcal{A}}_a(x,\mathbf{k}_{\perp},\mu^2) &= \Delta_a(\mu^2,\mathbf{k}_{\perp})\tilde{\mathcal{A}}_a(x,\mathbf{k}_{\perp},\mu_0^2) + \sum_b \int \frac{d^2\mu'_{\perp}}{\pi\mu'^2} \frac{\Delta_a(\mu^2,\mathbf{k}_{\perp})}{\Delta_a(\mu'^2,\mathbf{k}_{\perp})} \Theta(\mu^2-\mu'^2) \Theta(\mu'^2-\mu_0^2) \times \\ & \times \int_x^{z_M} dz \tilde{P}^R_{ab}(z,\mathbf{k}_{\perp}+(1-z)\mu'_{\perp},(1-z)\mu'_{\perp}) \tilde{\mathcal{A}}_b(\frac{x}{z},\mathbf{k}_{\perp}+(1-z)\mu'_{\perp},\mu'^2) \end{split}$$

Monte Carlo implementation

 $\tilde{P}_{ab}(z,\mathbf{k}_{\!\perp},\mathbf{q}_{\!\perp})\!\!:$

TMD splitting functions postitive definite

No singularities in the PB phase space

Monte Carlo implementation

 $\tilde{P}_{ab}(z,\mathbf{k}_{\!\perp},\mathbf{q}_{\!\perp})\!\!:$

- TMD splitting functions postitive definite
- No singularities in the PB phase space
- k_{\perp} -dependent Sudakov:
 - In PB MC code, the scale should be generated according to the Sudakov form factor: Generate $R = \Delta_a(\mu_i^2)/\Delta_a(\mu_{i-1}^2) \rightarrow \text{find } \mu_i^2 = \Delta_a^{-1}(R\Delta_a(\mu_{i-1}^2))$
 - Finding the inverse of Δ_a is non trivial!

Monte Carlo implementation

 $\tilde{P}_{ab}(z,\mathbf{k}_{\perp},\mathbf{q}_{\perp})\!\!:$

- TMD splitting functions postitive definite
- No singularities in the PB phase space
- k_{\perp} -dependent Sudakov:
 - In PB MC code, the scale should be generated according to the Sudakov form factor: Generate $R = \Delta_a(\mu_i^2)/\Delta_a(\mu_{i-1}^2) \rightarrow \text{find } \mu_i^2 = \Delta_a^{-1}(R\Delta_a(\mu_{i-1}^2))$
 - Finding the inverse of Δ_a is non trivial!
 - $\blacktriangleright \ \ \, \mbox{ In the normal PB code a table is calculated} \rightarrow \mbox{ interpolate to find } \mu_i \\ \mbox{ With } k_\perp \mbox{-dependent Sudakov form factor, additional dimension} \rightarrow \mbox{ extensive calculation} \\ \end{tabular}$

Monte Carlo implementation

 $\tilde{P}_{ab}(z,\mathbf{k}_{\perp},\mathbf{q}_{\perp})\!\!:$

- TMD splitting functions postitive definite
 - No singularities in the PB phase space
- k_{\perp} -dependent Sudakov:
 - In PB MC code, the scale should be generated according to the Sudakov form factor: Generate $R = \Delta_a(\mu_i^2)/\Delta_a(\mu_{i-1}^2) \rightarrow \text{find } \mu_i^2 = \Delta_a^{-1}(R\Delta_a(\mu_{i-1}^2))$
 - Finding the inverse of Δ_a is non trivial!
 - In the normal PB code a table is calculated \rightarrow interpolate to find μ_i With k_\perp -dependent Sudakov form factor, additional dimension \rightarrow extensive calculation
 - Used VETO-algorithm instead

VETO Algorithm [hep-ph/0603175]

$$\begin{split} & \Delta_a(\mu^2,\mathbf{k}_{\perp}) = \exp\left(-\int_{\mu_0^2}^{\mu^2} \frac{d\mu'^2}{\mu'^2} f_a(\mu'^2,\mathbf{k}_{\perp})\right) \text{with} \\ & f_a(\mu^2,\mathbf{k}_{\perp}) = \sum_b \int_0^{z_M} dz \ z \ \frac{1}{\pi} \int_0^{\pi} d\phi P_{ba}^R(z,\mathbf{k}_{\perp},\mu'_{\perp}) \end{split}$$

Find better function $g_a(\mu^2) \geq f_a(\mu^2, {\bf k}_\perp)$ for all $\mu.$

- 1. Start with j=0, $\mu_{j=0}^2=\mu_{i-1}^2$
- 2. j=j+1. Select $\mu_j^2 > \mu_{j-1}^2$ according to $R_1 = \exp\left(-\int_{\mu_{j-1}^2}^{\mu_j^2} \frac{d\mu'^2}{\mu'^2}g_a(\mu'^2)\right)$
- 3. if $f(\mu_j^2)/g(\mu_j^2) \leq R_2$ go to 2
- 4. else: μ_j^2 is generated scale

VETO Algorithm [hep-ph/0603175]

$$\begin{split} &\Delta_a(\mu^2,\mathbf{k}_{\perp}) = \exp\left(-\int_{\mu_0^2}^{\mu^2}\frac{d\mu'^2}{\mu'^2}f_a(\mu'^2,\mathbf{k}_{\perp})\right) \text{with} \\ &f_a(\mu^2,\mathbf{k}_{\perp}) = \sum_b \int_0^{z_M}dz \, z \, \frac{1}{\pi}\int_0^{\pi}d\phi P_{ba}^R(z,\mathbf{k}_{\perp},\mu'_{\perp}) \end{split}$$

Find better function $g_a(\mu^2) \geq f_a(\mu^2, {\bf k}_{\perp})$ for all $\mu.$

- 1. Start with j=0, $\mu_{j=0}^2=\mu_{i-1}^2$
- 2. j=j+1. Select $\mu_j^2 > \mu_{j-1}^2$ according to $R_1 = \exp\left(-\int_{\mu_{j-1}^2}^{\mu_j^2} \frac{d\mu'^2}{\mu'^2}g_a(\mu'^2)\right)$
- 3. if $f(\mu_j^2)/g(\mu_j^2) \leq R_2$ go to 2
- 4. else: μ_j^2 is generated scale

Usually g is chosen to have an known inverse function. We chose $g_a(\mu^2) = \sum_b \int_0^{z_M} dz \, z \, (P^R_{ba}(z) + h_{ba}(z)).$ No known inverse, but:

Close to
$$f_a
ightarrow$$
 efficient

 $\blacktriangleright \quad \text{No} \ k_\perp \text{-dependence} \rightarrow \text{table}$

We studied effects of TMD Splitting functions on the evolution. No fits has been done yet:

6

Not yet ready for phenomenology

We studied effects of TMD Splitting functions on the evolution. No fits has been done yet:

Not yet ready for phenomenology Implementation with:

PB method (LO)

PB with TMD Splitting functions

We studied effects of TMD Splitting functions on the evolution. No fits has been done yet:

Not yet ready for phenomenology Implementation with:

PB method (LO)

- PB with TMD Splitting functions
- $\begin{array}{l} \blacktriangleright \quad \mbox{Effects are small for large x \rightarrow} \\ \hline \mbox{reasonable since} \\ \tilde{P}_{ab}(z,{\bf k}_{\perp},{\bf q}_{\perp}) \xrightarrow[k_{\perp}\rightarrow 0]{} \\ P_{ab}(z) \end{array}$

 PB is capable of handling TMD P and TMD sudakov

down, u = 100 GeV, k from 0 up to 1000000000 GeV 10 xf(x,µ) We studied effects of TMD Splitting functions on the evolution. No fits has been done yet: Not yet ready for phenomenology Implementation with: PB method (LO) PB with TMD Splitting functions 10-1 Effects are small for large x \rightarrow reasonable since $\tilde{P}_{ab}(z,\mathbf{k}_{\perp},\mathbf{q}_{\perp}) \xrightarrow[k_{\perp} \rightarrow 0]{}$ 10-2 1.2 $P_{ab}(z)$ 1.1 PB is capable of handling TMD P and TMD sudakov 0.9

TMDs vs ${f k}_\perp$

PB method (LO)

- PB with TMD Splitting functions
- Whole k₁-region is affected

TMDs vs ${f k}_\perp$

PB method (LO)

- PB with TMD Splitting functions
- Whole k₁-region is affected

TMDs vs ${f k}_{ot}$

PB method (LO)

- PB with TMD Splitting functions
- Whole **k**_⊥-region is affected
- With TMD P, bumps in distribution are also visible
- Effects from q₀ and q_s in TMD P are similar as in collinear case

Summary and outlook

- l presented a parton branching algorithm for space-like parton evolution with k_{\perp} -dependent splitting functions
- The splitting functions are a (positive-definite) $k_T \neq 0$ continuation of the LO DGLAP splitting functions originally obtained from high-energy factorization
- \blacktriangleright k_{\perp} -dependent splittings affect both real emission and Sudakov form factors
- They have been implemented in the PB-TMD Monte Carlo code uPDFevolv using the veto algorithm
- New code is working and produces both collinear and TMD parton distributions paper in preparation
- Ready to do phenomenology:
 - Perform fits to DIS and DY data to determine nonperturbative TMDs
 - Use them to make PB-TMD predictions for LHC and EIC processes including for the first time the effects of TMD splittings