# Obtaining stable NLO corrections in High-Energy Factorization using Modified Multi-Regge Kinematics ${ }^{1}$ 

M. A. Nefedov ${ }^{2}$

REF-2020, 09.12.2020

[^0]
## Introduction

The program of High-Energy or $k_{T}$-factorization have lost it's popularity in ealy 2000s, due to discovery of large NLO corrections to BFKL kernel [Fadin, Lipatov; Camici, Ciafaloni 98'], pointing towards some physics problems of the formalism, and due to the advent of "NLO-revolution" in Collinear-Parton Model calculations. At present the interest is renewed for several reasons:

- It is unlikely, that fully-differential NNLO calculations for general colored final-states will be available in the near future.
- HEF provides more realistic kinematics than CPM already at LO. Lots of successful pheno. studies at LO (e.g. talk by A. van Hameren on multijet production or V.Saleev on Drell-Yan).
- Problems in some NLO CPM calculations: e.g. $\sqrt{S}$-behaviour of $\eta_{c}$ total cross-section at NLO [Lansberg, Ozcelik, 2020]
- A lot has been done to understand "collinear" problems of NLO BFKL calculations ("Duality approach", "kinematic constraint approach", "hybrid DGLAP-BFKL evolution", etc.).
- Recent successful applications of collinearly-improved NLL BFKL resummation to resolve long-standing tensions with small- $x_{B}$ DIS data, e.g. [R.D.Ball,et.al.,2018; xFitter, 2018].


## Test-process: Higgs-induced DIS

 For the exploratory NLO calculation we pick a process:$$
\begin{equation*}
\mathcal{O}(q)+p(P) \rightarrow X \tag{q}
\end{equation*}
$$

where operator $\mathcal{O}(x)=-\frac{1}{2} \operatorname{tr}\left[G_{\mu \nu}(x) G^{\mu \nu}(x)\right]$, can be understood as effective Higgs-Gluon coupling in the limit $m_{t} \rightarrow \infty$. See also the talk by M.Hentschinski on $H$-production in HEF.


- QCD corrections for the inclusive "structure function" are known in CPM up to $O\left(\alpha_{s}^{3}\right)$ [Soar et.al., 2009] (see also talk by S.Jaskiewicz)
- One can study $p_{T}$-spectrum of the leading jet: two-scale $\left(Q^{2}, p_{T}\right)$ process already at LO in HEF
- CFs have a weird LP small- $z$ behaviour: $\alpha_{s}^{k} \ln ^{2 k}(1 / z) / z$ starting at NNLO [Hautmann, 2002]
CMS of momenta $P$ and $q\left(x_{B}=Q^{2} /(2 P q), Q^{2}=-q^{2}\right)$ :

$$
\begin{aligned}
& P_{-}=\sqrt{\frac{Q^{2}}{x_{B}\left(1-x_{B}\right)}}, P_{+}=\mathbf{P}_{T}=0 \\
& q_{+}=\frac{Q^{2}}{x_{B} P_{-}}, q_{-}=-x_{B} P_{-}, \mathbf{q}_{T}=0
\end{aligned}
$$

where $k_{ \pm}=n_{ \pm} \cdot k=k^{0} \pm k^{3}, n_{ \pm}^{2}=0, n_{+} n_{-}=2$.

## Leading-twist HEF

Structure-function in CPM ( $n_{F}=0$ from now on!):

$$
F_{\mathcal{O}}\left(x_{B}, Q^{2}\right)=\frac{\pi \lambda_{\mathcal{O}}^{2}}{4} \int_{x_{B}}^{1} \frac{d z}{z} \frac{x_{B}}{z} f_{g}\left(\frac{x_{B}}{z}, \mu_{F}\right) C\left(z, Q^{2}, a_{s}, \mu_{F}, \mu^{2}\right)+O\left(\left(\Lambda_{Q C D}^{2} / Q^{2}\right)^{\nu}\right)
$$

Leading-twist HEF hypothesis[Collins, Ellis 91'; Catani, Hautmann 94']:

$$
\begin{aligned}
C(z)= & \int \frac{d^{2} \mathbf{q}_{T 1}}{\pi} \int_{x_{B}}^{x_{B} / z} \frac{d x_{1}}{x_{1}} \mathcal{C}\left(\frac{z x_{1}}{x_{B}}, \mathbf{q}_{T 1}, a_{s}, \mu_{F}, \mu, \mu_{Y}\right) H\left(\frac{x_{B}}{x_{1}}, \mathbf{q}_{T 1}, Q^{2}, a_{s}, \mu, \mu_{Y}\right) \\
& \Rightarrow \Phi_{g}=\mathcal{C} \otimes_{z} f_{g}-\text { unintegrated PDF }
\end{aligned}
$$

- Proven at LL and NLL w.r.t. $\ln 1 / z$ at leading power in $z \ll 1$.
- Violated by multi-Reggeon exchanges at NNLL and beyond [B-JIMWLK; Fadin, Lipatov, 2017; ...] (see also talks by G.Falcioni, and G.Ridgway)
- pheno. assumption: most important effects are one-Reggeon exchange and collinear/running-coupling corrections to it. All other effects - subleading at $Q^{2} / x_{B} \rightarrow \infty$ ? (see the talk by R.Boussarie).
A lot of successful LO phenomenology is done under this assumption (see e.g. talk by V.Saleev on Drell-Yan), so it is reasonable to push it to $\mathrm{NLO}_{4} / 31$


## Leading Order

LO subprocess in HEF:

$$
\mathcal{O}(q)+R_{-}\left(q_{1}\right) \rightarrow g\left(q+q_{1}\right)
$$

where $R_{-}-$Reggeized gluon with $q_{1}^{\mu}=\frac{q_{1}^{-}}{2} n_{+}^{\mu}+q_{T 1}^{\mu}, q_{1}^{-}=x_{1} P_{-}$.
Structure function at LO:
$F_{\mathcal{O}}^{(\text {LO PRA })}\left(x_{B}, Q^{2}\right)=\frac{\pi \lambda_{\mathcal{O}}^{2}}{4} \times \int_{0}^{\infty} d \mathbf{q}_{T 1}^{2} \Phi_{g}\left(x_{1}, \mathbf{q}_{T 1}\right), x_{1}=\frac{Q^{2}+\mathbf{q}_{T 1}^{2}}{Q^{2}} x_{B}$,
where $\mathbf{p}_{T g}=\mathbf{q}_{T 1}$, so one can study $p_{T}$-spectrum of a gluon (jet) at $L O$.
Gluon (jet) rapidity

$$
Y_{H}=\frac{1}{2} \ln \left(\frac{Q^{2}\left(1-x_{B}\right)}{\mathbf{q}_{T 1}^{2} x_{B}}\right)
$$

We put $\pi \lambda_{\mathcal{O}}^{2} / 4=1$ so that at LO CPM:

$$
F_{\mathcal{O}}^{(\mathrm{LO} \mathrm{CPM})}\left(x_{B}, Q^{2}\right)=x_{B} f_{g}\left(x_{B}, \mu^{2}=Q^{2}\right)
$$

## MRK LO evolution equation



Is the LO BFKL-equation with real emissions ordered in physical rapidity $y_{j}=\ln \left(k_{j}^{+} / k_{j}^{-}\right) / 2: \mathcal{C}\left(x, \mathbf{q}_{T}, \mu_{Y}\right)=\mathcal{C}_{0}\left(x, \mathbf{q}_{T}\right)+\sum_{n=1}^{\infty} \mathcal{C}_{n}\left(x, \mathbf{q}_{T}, \mu_{Y}\right)$, with $\mathcal{C}_{0}=\pi \delta(x-1) \delta\left(\mathbf{q}_{T}\right), \mathcal{C}_{1}\left(x, \mathbf{q}_{T}, \mu_{Y}\right)=\frac{\alpha_{s} C_{A}}{\pi} \frac{1}{\mathbf{q}_{T}^{2}} \theta\left(\Delta\left(\left|\mathbf{q}_{T}\right|, \mu_{Y}\right)-x\right)$ where $\Delta\left(q_{T}, \mu\right)=\mu /\left(\mu+q_{T}\right)$ (=cutoff in KMRW UPDF), $\mu_{Y}=q_{1}^{-} e^{Y_{\mu}}$
rapidity scale, and ( $\omega_{g}$ - one-loop gluon Regge trajectory)

$$
\begin{aligned}
& \mathcal{C}_{n}\left(x, \mathbf{q}_{T}, \mu_{Y}\right)=\int_{x}^{1} \frac{d z}{z(1-z)}\left\{\frac{\alpha_{s} C_{A}}{\pi} \int \frac{d^{D-2} \mathbf{k}_{T}}{\pi(2 \pi)^{-2 \epsilon}} \frac{1}{\mathbf{k}_{T}^{2}} \leftarrow\right. \text { real emission } \\
& \times \mathcal{C}_{n-1}\left(\frac{x}{z}, \mathbf{q}_{T}+\mathbf{k}_{T}, \frac{\left|\mathbf{k}_{T}\right|}{1-z}\right) \theta\left(\Delta\left(\left|\mathbf{k}_{T}\right|, \mu_{Y}\right)-z\right) \leftarrow y-\text { ordering } \\
& \left.+2 \omega_{g}\left(\mathbf{q}_{T}^{2}\right) \mathcal{C}_{n-1}\left(\frac{x}{z}, \mathbf{q}_{T}, \mu_{Y} \frac{x(1-z)}{z(z-x)}\right) \theta\left(\Delta\left(\left|\mathbf{q}_{T}\right|, \mu_{Y}\right)-z\right)\right\} \leftarrow \text { virt.part } 6 / 31
\end{aligned}
$$

## Doubly-logarithmic UPDF

One has to solve the dimensionally-regularized evolution equation to subtract collinear divergences. To demonstrate how it works let's skip all $O(z)$-corrections in MRK-equation and go to $\left(N, \mathbf{x}_{T}\right)$-space:

$$
\begin{aligned}
\mathcal{C}\left(N, \mathbf{x}_{T}\right)= & 1+\frac{\hat{\alpha}_{s}}{N} \frac{\Gamma(1-\epsilon)\left(\mu^{2}\right)^{\epsilon}}{(-\epsilon) \pi^{-\epsilon}} \int d^{2-2 \epsilon} \mathbf{y}_{T} \mathcal{C}\left(N, \mathbf{y}_{T}\right) \times \\
& {\left[\left(\mathbf{x}_{T}^{2}\right)^{\epsilon} \delta\left(\mathbf{x}_{T}-\mathbf{y}_{T}\right)-\frac{\epsilon \Gamma(1-\epsilon)}{\pi^{1-\epsilon}\left(\left(\mathbf{x}_{T}-\mathbf{y}_{T}\right)^{2}\right)^{1-2 \epsilon}}\right], }
\end{aligned}
$$

where $\hat{\alpha}_{s}=\alpha_{s} C_{A}\left(\mu^{2}\right)^{-\epsilon} / \pi$, then we solve it iteratively and collinear divergences at each order organize into:

$$
Z_{\text {coll. }}=\exp \left[-\frac{1}{\epsilon} \int_{0}^{\hat{\alpha}_{s} S_{\epsilon}} \frac{d \alpha}{\alpha} \gamma_{N}(\alpha)\right], \gamma_{N}(\alpha)=\gamma_{1}(N) \alpha+\gamma_{2}(N) \alpha^{2}+\ldots,
$$

where $S_{\epsilon}=\exp \left[\epsilon\left(-\gamma_{E}+\ln 4 \pi\right)\right]$ for $\overline{M S}$-scheme and [Jaroszewicz 82', Catani, Hautmann, 94']:

$$
\gamma_{1}=\frac{1}{N}, \gamma_{2}=\gamma_{3}=0, \gamma_{4}=\frac{2 \zeta_{3}}{N^{4}}, \gamma_{5}=\frac{2 \zeta_{5}}{N^{5}}, \ldots
$$

and poles in $N$ correspond to $\ln ^{k}(1 / z) / z$ in the DGLAP $P_{g g}(z)$.

## Doubly-logarithmic UPDF

In doubly-logarithmic appriximation (corrections to which start at $O\left(\alpha_{s}^{3}\right)!$ ), the finite part of $\mathcal{C}$ can be expressed as:

$$
\mathcal{C}^{(\text {ren. })}\left(N, \mathbf{x}_{T}, \mu\right) \underset{\mathrm{DLA}}{\simeq} \exp \left[-\hat{\alpha}_{s}(\mu) \frac{\ln \left(\mu^{2} \overline{\mathbf{x}}_{T}^{2}\right)}{N}\right] \times F_{N P}\left(\mathbf{x}_{T}\right)
$$

where $\overline{\mathbf{x}}_{T}=\mathbf{x}_{T} e^{\gamma_{E}} / 2$.
To improve convergence of Fourier-transform to $\mathbf{q}_{T}$-space we add a non-perturbative factor: $F_{N P}=e^{-\Lambda^{2} \mathbf{x}_{T}^{2}}$. It has no effect on $q_{T} \gg \Lambda$ or cross-sections. Some numerical results:



## EFT-framework

The gauge-invariant EFT for Multi-Regge processes in QCD, which includes Reggeized gluons [Lipatov; 1995] and Reggeized quarks [Lipatov, Vyazovsky; 2001] has been introduced as a systematic tool to compute and resum the higher-order corrections in QCD, enhanced by $\ln (s /(-t))(\sim \ln (1 / z))$, with the arbitrary $N^{k} L L$ accuracy at leading power in $(-t) / s$ (or $z)$. Advantages:

- Gauge invariance (even with regularization of RDs!).
- Possibility to work in covariant gauges.
- Provides foundation for HEF: one-Reggeon exchange contribution is well-defined and gauge-invariant to all orders in $\alpha_{s}$. Parton Reggeization Approach (PRA): gauge-invariant amplitudes with off-shell(Reggeized) initial-state partons from Lipatov's EFT should be used as short-distance parts in $k_{T}$-factorization calculations.

Phenomenological applications to Dijet production [M.N., Saleev, Shipilova, 2012], $B \bar{B}$-correlations [Karpishkov, M.N., Saleev, 2017], $J / \psi$ pair production [He, Kniehl, M.N., Saleev, 2019] and many more...

Thanks to Andreas van Hameren and his KaTie code, the problem of tree-level calculations is solved for most of the practical purposes.

## Multi-Regge Kinematics.

Consider the $2 \rightarrow 2+n$ scattering in Multi-Regge(MRK) or Quasi-Multi Regge(QMRK) kinematics.

Double Regge limit (MRK):

$s_{1} \gg-q_{1}^{2} \simeq \mathbf{q}_{T 1}^{2}, s_{2} \gg-q_{2}^{2} \simeq \mathbf{q}_{T 2}^{2}$,
momentum fractions $z_{1}=q_{1}^{+} / P_{1}^{+}$, $z_{2}=q_{2}^{-} / P_{2}^{-}$.

Intuition: $t$-channel diagrams dominate.

## Properties of MRK:

- $y\left(P_{1}^{\prime}\right) \rightarrow+\infty, y\left(P_{2}^{\prime}\right) \rightarrow-\infty, y(k)-$ finite,
- $z_{1} \sim z_{2} \sim z \ll 1,\left|\mathbf{k}_{T}\right| \ll \sqrt{s}$,
- $q_{1}^{+} \sim\left|\mathbf{q}_{T 1}\right| \sim O(z) \gg q_{1}^{-} \sim O\left(z^{2}\right)$, $q_{2}^{-} \sim\left|\mathbf{q}_{T 2}\right| \sim O(z) \gg q_{2}^{+} \sim O\left(z^{2}\right)$.


## Reggeon fields

Let's introduce gauge-invariant Reggeon fields $R_{ \pm}(x)=T^{a} R_{ \pm}^{a}(x)$ subjet to kinematic constraints ( $\Leftrightarrow(\mathrm{Q}) \mathrm{MRK}, \partial_{ \pm}=n_{ \pm}^{\mu} \partial_{\mu}=2 \frac{\bar{\partial}}{\partial x^{\mp}}$ ):

$$
\partial_{-} R_{+}=\partial_{+} R_{-}=0 \Rightarrow
$$

$$
R_{+} \text {carries }\left(k_{+}, \mathbf{k}_{T}\right) \text { and } R_{-} \text {carries }\left(k_{-}, \mathbf{k}_{T}\right) .
$$

Effective action [Lipatov, 1995]:

$$
\begin{aligned}
& S=\int d^{4} x\left(-2 R_{+}^{a} \partial_{\perp}^{2} R_{-}^{a}\right)+\sum_{\text {rap. ints. }} \int d^{2} \mathbf{x}_{T}\left\{\int \frac{d x_{+} d x_{-}}{2} L_{\mathrm{QCD}}\left(x, A_{\mu}, \psi\right)\right. \\
& \left.+\int \frac{d x_{+}}{2} \operatorname{tr}\left[R_{-}^{a}\left(x_{+}, \mathbf{x}_{T}\right) \mathcal{T}_{+}\left[x, A_{\mu}\right]\right]+\int \frac{d x_{-}}{2} \operatorname{tr}\left[R_{+}^{a}\left(x_{-}, \mathbf{x}_{T}\right) \mathcal{T}_{-}\left[x, A_{\mu}\right]\right]\right\}
\end{aligned}
$$

what are the interaction operators $\mathcal{T}_{ \pm}$?

## Infinite light-like Wilson lines

Constraints we have:

- At leading power in energy, partons highly separated in rapidity perceive each-other as infinite light-like Wilson lines [Mueller, Nikolaev, Zakharov, 1990s; ...; Caron-Huot, 2013; ...],
- Hermiticity [Lipatov, 1997; Bondarenko, Zubkov, 2018]
- $R_{ \pm} \rightarrow g$ transition is given by "non-sense" polarization $n_{\mp}^{\mu}$.

$$
\Rightarrow \mathcal{T}_{ \pm}\left[x, A_{\mu}\right]=\frac{i}{g_{s}} \partial_{\perp}^{2}\left(W_{\infty}\left[x_{ \pm}, \mathbf{x}_{T}, A_{\mu}\right]-W_{\infty}^{\dagger}\left[x_{ \pm}, \mathbf{x}_{T}, A_{\mu}\right]\right),
$$

Where:

$$
\begin{aligned}
W_{x_{\mp}}\left[x_{ \pm}, \mathbf{x}_{T}, A_{ \pm}\right] & =P \exp \left[\frac{-i g_{s}}{2} \int_{-\infty}^{x_{\mp}} d x_{\mp}^{\prime} A_{ \pm}\left(x_{ \pm}, x_{\mp}^{\prime}, \mathbf{x}_{T}\right)\right] \\
& =\left(1+i g_{s} \partial_{ \pm}^{-1} A_{ \pm}\right)^{-1}
\end{aligned}
$$

and $\partial_{ \pm}^{-1} \rightarrow-i /\left(k^{ \pm}+i \varepsilon\right)$ in the Feynman rules.
After IBP trick:

$$
S_{\text {int. }}=\int d x \frac{i}{g_{s}} \operatorname{tr}\left[R_{+}(x) \partial_{\perp}^{2} \partial_{-}\left(W_{x_{+}}\left[A_{-}\right]-W_{x_{+}}^{\dagger}\left[A_{-}\right]\right)+(+\leftrightarrow-)\right],
$$

## Rapidity divergences and regularization

Cutoff in rapidity [Lipatov, 1995] ( $\left.q^{ \pm}=\sqrt{q^{2}+\mathbf{q}_{T}^{2}} e^{ \pm y}, p^{+}=p^{-}=0\right)$ :

$$
\begin{aligned}
& \int \frac{d q^{+} d q^{-}}{q^{+} q^{-}}=\int_{y_{1}}^{y_{2}} d y \int \frac{d q^{2}}{q^{2}+\mathbf{q}_{T}^{2}}, \\
& \Pi_{a b}^{(1)} \sim \delta_{a b} \mathbf{p}_{T}^{2} \times \underbrace{C_{A} g_{s}^{2} \int \frac{\mathbf{p}_{T}^{2} d^{D-2} \mathbf{q}_{T}}{\mathbf{q}_{T}\left(\mathbf{p}_{T}-\mathbf{q}_{T}\right)^{2}}}_{\omega^{(1)}\left(\mathbf{p}_{T}^{2}\right)} \times\left(y_{2}-y_{1}\right)+\text { finite terms }
\end{aligned}
$$

Tilted Wilson-line regularization [Hentschinski, Sabio Vera, Chachamis et. al., 2012-2013]:

$$
\tilde{n}^{ \pm}=n^{ \pm}+r \cdot n^{\mp}, \tilde{k}^{ \pm}=k^{ \pm}+r \cdot k^{\mp}, r \rightarrow 0
$$

+ modified kinematics [M.N.,2019]: $\tilde{\partial}_{+} R_{-}=\tilde{\partial}_{-} R_{+}=0$.


## Rapidity divergences at one loop

Only log-divergence $\sim \ln r$ (Blue cells in the table) is related with Reggeization of particles in $t$-channel.
Integrals which do not have log-divergence may still contain the power-dependence on $r$ :
$\rightarrow r^{-\epsilon} \rightarrow 0$ for $r \rightarrow 0$ and $\epsilon<0$.

- $r^{+\epsilon} \rightarrow \infty$ for $r \rightarrow 0$ and $\epsilon<0$ - weak-power divergence (Pink cells in the table)
- $r^{-1+\epsilon} \rightarrow \infty$ - power divergence. (Red)

| (\# LC prop.) $\backslash$ (\# quadr. prop.) | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $A_{[-]}$ | $B_{[-]}$ | $C_{[-]}$ | $\ldots$ |
| 2 | $A_{[+-]}$ | $B_{[+-]}$ | $C_{[+-]}$ | $\ldots$ |
| 3 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |

The weak-power and power-divergences cancel between Feynman diagrams describing one region in rapidity, so only log-divergences are left.

## Triangle integrals, logarithmic RD

Result for $Q^{2}=0$ :

$$
\begin{aligned}
C_{[-]}\left(t_{1}, 0, q^{-}\right) & =\frac{1}{q^{-} t_{1}}\left(\frac{\mu^{2}}{t_{1}}\right)^{\epsilon} \frac{1}{\epsilon}\left[\ln r+i \pi-\ln \frac{\left|q_{-}\right|^{2}}{t_{1}}\right. \\
& -\psi(1+\epsilon)-\psi(1)+2 \psi(-\epsilon)]+O\left(r^{1 / 2}\right)
\end{aligned}
$$

coincides with the result of [G. Chachamis, et. al., 2012].

Result for $Q^{2} \neq 0$ [M.N., 2019]:

$$
C_{[-]}\left(t_{1}, Q^{2}, q_{-}\right)=C_{[-]}\left(t_{1}, 0, q_{-}\right)+\left(\frac{\mu^{2}}{t_{1}}\right)^{\epsilon} \frac{I\left(Q^{2} / t_{1}\right)}{q_{-} t_{1}}-\frac{1}{t_{1}} \underbrace{\Delta B_{[-]}\left(Q^{2}, q_{-}\right)}_{\propto r^{-\epsilon}},
$$

where

$$
\begin{aligned}
I(X) & =-\frac{2 X^{-\epsilon}}{\epsilon^{2}}-\frac{2}{\epsilon} \int_{0}^{X} \frac{\left(1-x^{-\epsilon}\right) d x}{1-x} \\
& =-\frac{2 X^{-\epsilon}}{\epsilon^{2}}+2\left[-\operatorname{Li}_{2}(1-X)+\frac{\pi^{2}}{6}\right]+O(\epsilon)
\end{aligned}
$$

$R \mathcal{O} g$-vertex (diags. 4-9)

(1)

(4)

(7)

(2)

(5)

(8)

(3)

(6)

(9)

(10)

(11)
(12)

(13)

## $R \mathcal{O} g$-vertex

The one-loop correction is proportional to the Born vertex:

$$
G_{+\mu}^{(0)}=\frac{i}{2}\left(\left(Q^{2}-t_{1}\right) n_{\mu}^{-}-2 q_{-}\left(q_{1}\right)_{\mu}\right),
$$

with the coefficient

$$
\begin{aligned}
& C\left[G_{+}^{(0)}\right]=\frac{\bar{\alpha}_{s}}{4 \pi} \frac{1}{2}\left\{\frac{B\left(t_{1}\right)}{(d-2)(d-1)\left(Q^{2}-t_{1}\right)^{2}}\right. \\
& \times\left[C _ { A } \left((d-2)(5 d-4) Q^{4}-2(d(7 d-24)+16) Q^{2} t_{1}\right.\right. \\
& \left.\left.+(d-2)(5 d-4) t_{1}^{2}\right)-2(d-2)^{2} n_{F}\left(Q^{2}-t_{1}\right)^{2}\right] \\
& -\frac{2 C_{A}(d-4) Q^{2} B\left(Q^{2}\right)}{(d-2)\left(Q^{2}-t_{1}\right)^{2}}\left[(d-4) Q^{2}-(d-2) t_{1}\right] \\
-2 C_{A} & {\left.\left[q_{-}\left(t_{1} C_{[-]}\left(t_{1}, Q^{2}, q_{-}\right)+B_{[-]}(q)-B_{[-]}\left(q+q_{1}\right)\right)+\left(t_{1}-Q^{2}\right) C\left(t_{1}, Q^{2}\right)\right]\right\}, }
\end{aligned}
$$

$\epsilon$-expansion of the one-loop coefficient function:

$$
\begin{aligned}
& H_{\text {virt. . unsubtr. }}^{(\text {NLL }), ~}=2 \operatorname{Re}\left(C\left[G^{(0)}\right]\right)=\frac{\bar{\alpha}_{s}}{2 \pi}\left\{-\frac{C_{A}}{\epsilon^{2}}+\frac{1}{\epsilon}\left[\beta_{0}-C_{A}\left(1+L_{1}\right)\right]-C_{A}\left(\frac{1}{\epsilon}+\ln \frac{\mu^{2}}{t_{1}}\right) \ln \bar{\tau}\right. \\
& \left.+C_{A}\left[2 \operatorname{Li}_{2}\left(1-\frac{Q^{2}}{t_{1}}\right)+\frac{L_{2}^{2}}{2}-L_{2}-\frac{1}{2} L_{1}\left(L_{1}+2\right)+\frac{\pi^{2}}{6}-\frac{2}{3}\right]+\beta_{0}\left[\frac{10}{6}+L_{1}+L_{2}\right]+O(r, \epsilon)\right\},
\end{aligned}
$$

where $L_{1}=\ln \left(\mu^{2} / Q^{2}\right), L_{2}=\ln \left(Q^{2} / t_{1}\right), t_{1}=\mathbf{q}_{T 1}^{2}$ and $\bar{r}=r Q^{2} / q_{+}^{2}$.

## NLO real-emission amplitude

Given by diagrams (with some combined vertices):


Convenient parametrization for kinematics ( $k_{1,2^{-}}$final-state gluons):

$$
\mathbf{k}_{T 1}, \mathbf{k}_{T 2}, \hat{z}=\frac{k_{1}^{-}}{q_{1}^{-}+q_{-}} .
$$

Singular limits $\left(f=\overline{\left|\mathcal{M}_{\mathrm{NLO}}\right|^{2}} / \overline{\left|\mathcal{M}_{\mathrm{LO}}\right|^{2}} /\left(4 C_{A} g_{s}^{2}\right)\right)$ :

- Final-state collinear limit $\mathbf{k}_{1} \| \mathbf{k}_{2}\left(\hat{s}=\left(k_{1}+k_{2}\right)^{2}\right)$ :

$$
f_{\text {coll. }}=\frac{1}{\hat{s}} p_{g g}(\hat{z}), p_{g g}(z)=\frac{1-z}{z}+\frac{z}{1-z}+z(1-z),
$$

- Soft limits ( $k_{1}^{0} \rightarrow 0$ or $\left.k_{2}^{0} \rightarrow 0\right)$ :

$$
f_{\text {soft. }}^{(\hat{z} \rightarrow 0)}=\frac{\hat{z}^{2}\left(\mathbf{k}_{T 1}+\mathbf{k}_{T 2}\right)^{2}}{\mathbf{k}_{T 1}^{2}\left(\mathbf{k}_{T 1}(1-\hat{z})-\mathbf{k}_{T 2} \hat{z}\right)^{2}}, f_{\mathrm{soft} .}^{(\hat{z} \rightarrow 1)}=\left[\hat{z} \rightarrow 1-\hat{z}, \mathbf{k}_{T 1} \leftrightarrow \mathbf{k}_{T 2}\right] .
$$

## Phase-space slicing

Following classic two-cutoff PS-slicing method [Harris, Owens, 2001] we define:

- Soft region $\left(\delta_{s} \ll 1\right)$ :

$$
\frac{k_{1}^{+}+k_{1}^{-}}{q_{+}}<\delta_{s} \text { or } \frac{k_{2}^{+}+k_{2}^{-}}{q_{+}}<\delta_{s} .
$$

- Hard-Collinear region $\left(\delta_{c} \ll \delta_{s}\right)$ :

$$
\Delta \phi_{1,2}^{2}+\Delta y_{1,2}^{2}<\delta_{c} \text { and NOT soft. }
$$

Soft region condition:

$$
\mathbf{k}_{T 1}^{2}<\mathbf{k}_{T 2}^{2} \hat{z}\left(\delta_{s}-e^{-2 Y_{H}} \hat{z}\right) \text { and }\left[\hat{z} \rightarrow 1-\hat{z}, \mathbf{k}_{T 1} \leftrightarrow \mathbf{k}_{T 2}\right]
$$

Integrals over soft and collinear regions are done analytically by standard methods.

## Double-counting subtraction: MRK

We have to subtract double-counting with the evolution of $\mathcal{C}$ in all phase-space, including soft region (see backup). One iteration of MRK evolution eqn. $\otimes \mathrm{LO}$ gives $\left(w=\mathrm{UPDF} \times \mathrm{ME}^{2}\right)$ :
$w_{\text {sub. } \hat{t}}^{(\mathrm{MRK})}=\Phi_{g}\left(x_{1}^{(\hat{\epsilon}, \mathrm{MRK})}, \mathbf{k}_{T 1}+\mathbf{k}_{T 2}\right) \frac{\alpha_{s} C_{A}}{\pi} \frac{1}{\mathbf{k}_{T 2}^{2}} \theta\left(\frac{(1-\hat{z})^{2}}{\hat{z}^{2}}-\frac{\mathbf{k}_{T 2}^{2}}{\mathbf{k}_{T 1}^{2}}\right)$,
with $x_{1}^{(\hat{t}, \text { MRK })}=\frac{x_{B}}{Q^{2}}\left(Q^{2}+\frac{\mathbf{k}_{T 1}^{2}}{z}\right)$, for $\hat{z} \rightarrow 0$ Regge limit. Also the subtraction for $\hat{z} \rightarrow 1$ Regge limit has to be included, which is obtained by:

$$
\hat{z} \rightarrow 1-\hat{z}, \mathbf{k}_{T 1} \leftrightarrow \mathbf{k}_{T 2} .
$$

## Subtractions in the virtual part

Consider the process:

$$
\mathcal{O}(q)+g(P) \rightarrow g\left(k_{2}, Y_{H}\right)+g\left(k_{1}, y_{1}\right),
$$

Regge limit of the one-loop ampl. is predicted by the EFT (checked!):

$$
\begin{array}{r}
\frac{2 \operatorname{Re}\left(\mathcal{M}_{1-\text { loop }} \mathcal{M}_{\text {tree }}^{*}\right)}{\left|\mathcal{M}_{\text {tree }}\right|^{2}}=H_{\text {virt. unsubtr. }}^{(\text {NLO }, \mathcal{O}}\left(\mathbf{q}_{T 1}^{2}, Y_{H}, \ln r\right)+ \\
H_{\text {virt. unsubtr. }}^{(\text {(LLO) } g}\left(\mathbf{q}_{T 1}^{2}, y_{1}, \ln r\right)-2 \Pi^{(1)}\left(\mathbf{q}_{T 1}^{2}, \ln r\right),
\end{array}
$$

where $\Pi^{(1)}$ is one-loop Reggeon self-energy. Subtracting the evolution contribution:

$$
\left(Y_{H}-y_{1}\right) \times 2 \omega_{g}\left(\mathbf{q}_{T 1}^{2}\right),
$$

and rearranging terms, one gets:

$$
\begin{aligned}
& H_{\text {virt. subtr. }}^{(\mathrm{NLO}), \mathcal{O}}\left(\mathbf{q}_{T 1}^{2}\right)=H_{\text {virt. unsubtr. }}^{(\mathrm{NLO}), \mathcal{O}}\left(\mathbf{q}_{T 1}^{2}, Y_{H}, \ln r\right)-\Pi^{(1)}\left(\mathbf{q}_{T 1}^{2}, \ln r\right)-2 Y_{H} \omega_{g}\left(\mathbf{q}_{T 1}^{2}\right), \\
& H_{\text {virt. subtr. }}^{(\mathrm{NLO}), g}\left(\mathbf{q}_{T 1}^{2}\right)=H_{\text {virt. unsubtr. }}^{(\mathrm{NLO}), g}\left(\mathbf{q}_{T 1}^{2}, y_{1}, \ln r\right)-\Pi^{(1)}\left(\mathbf{q}_{T 1}^{2}, \ln r\right)+2 y_{1} \omega_{g}\left(\mathbf{q}_{T 1}^{2}\right) \text {. }
\end{aligned}
$$

## Double-counting subtraction: MRK vs. MMRK



Red - exact $w$-function, dashed - MRK approx., solid - MMRK approx.

## Double-Counting subtraction: Modified-MRK approximation

The main problem of MRK-subtraction is, that it very poorly reproduces an exact ME in the DGLAP limit:

$$
\mathbf{q}_{T 1}^{2} \ll \mathbf{k}_{T 1}^{2} \simeq \mathbf{k}_{T 2}^{2} \ll Q^{2}
$$

To overcome this, we add a "propagator factor" to the subtraction term

$$
\begin{aligned}
& w_{\text {sub. } \hat{t}}^{(\mathrm{MMRK})}=\frac{\alpha_{s}(\mu) C_{A}}{\pi} \Phi_{g}\left(x_{1}^{(\hat{t}, \mathrm{MRK})}, \mathbf{k}_{T 1}+\mathbf{k}_{T 2}\right) \\
& \times \frac{1}{\mathbf{k}_{T 2}^{2}}\left(1+\frac{\hat{z} \mathbf{k}_{T 2}^{2}}{(1-\hat{z}) \mathbf{k}_{T 1}^{2}}\right)^{-2} \theta\left(\frac{(1-\hat{z})^{2}}{\hat{z}^{2}}-\frac{\mathbf{k}_{T 2}^{2}}{\mathbf{k}_{T 1}^{2}}\right)
\end{aligned}
$$

## Inspirations:

- TMD splitting functions (talk by L.Keersmaekers)
- High-Energy-Jets approach [J. Andersen et.al., 2009].
- Recent developments in the Kinematic Constraint approach [M. Deak, et al., 2019].


## UPDF Evolution, MMRK approximation

Adding the same "propagator factor" to the kernel we obtain the MMRK evolution for UPDF:

$$
\begin{aligned}
\mathcal{C}_{n}\left(x, \mathbf{q}_{T}, \mu_{Y}, \mu_{S}\right) & =\int_{x}^{1} \frac{d z}{z(1-z)}\left\{\frac{\alpha_{s} C_{A}}{\pi} \int \frac{d^{D-2} \mathbf{k}_{T}}{\pi(2 \pi)^{-2 \epsilon}} \frac{1}{\mathbf{k}_{T}^{2}}\left(1+\frac{z \mathbf{k}_{T}^{2}}{(1-z) \mu_{S}^{2}}\right)^{-2}\right. \\
\times & \mathcal{C}_{n-1}\left(\frac{x}{z}, \mathbf{q}_{T}+\mathbf{k}_{T}, \frac{\left|\mathbf{k}_{T}\right|}{1-z},\left|\mathbf{q}_{T}+\mathbf{k}_{T}\right|\right) \theta\left(\Delta\left(\left|\mathbf{k}_{T}\right|, \mu_{Y}\right)-z\right) \\
& \left.+2 \omega_{g}\left(\mathbf{q}_{T}^{2}\right) \mathcal{C}_{n-1}\left(\frac{x}{z}, \mathbf{q}_{T}, \mu_{Y} \frac{x(1-z)}{z(z-x)},\left|\mathbf{q}_{T}\right|\right) \theta\left(\Delta\left(\left|\mathbf{q}_{T}\right|, \mu_{Y}\right)-z\right)\right\},
\end{aligned}
$$

where $\mu_{S}^{2}=Q^{2}+\mathbf{q}_{T 1}^{2}$ for DIS kinematics.

## Analytic part together (with standard $\mu_{Y}$-choice:

$$
\left.Y_{\mu}=Y_{H}\right)
$$

Taking together the loop part, soft and collinear integrals and (M)MRK-soft subtraction terms we find, that all IR divergences cancel and only remaining UV divergence is related with $\mathcal{O}(x)$-renormalization: $Z_{\mathcal{O}}=1+\frac{\alpha_{s}}{4 \pi} \frac{\beta_{0}}{\epsilon}+\ldots$ The finite part of the answer is:

$$
\begin{aligned}
& H_{\mathrm{analyt} .}^{(\mathrm{NLO}),} Y_{\mu}=Y_{H} \\
& =\frac{\bar{\alpha}_{s} C_{A}}{2 \pi}\left[\frac{67}{6}-\frac{\pi^{2}}{2}+\frac{11}{3} \ln \left(\frac{\mu^{2}}{\mathbf{q}_{T 1}^{2}}\right)+2 \mathrm{Li}_{2}\left(1-\frac{Q^{2}}{\mathbf{q}_{T 1}^{2}}\right)\right. \\
& -\frac{11}{6} \ln \delta_{c}-2 \ln \delta_{c} \ln \delta_{s}+2 \ln \delta_{c} \ln (1+\xi) \\
& \left.+2 \ln \xi \ln (1+\xi)-2 \ln ^{2}(1+\xi)+O(\epsilon)\right]
\end{aligned}
$$

where $\xi=e^{-2 Y_{H}}$ with $Y_{H}=\frac{1}{2} \ln \left(\frac{Q^{2}\left(1-x_{B}\right)}{\mathbf{q}_{T 1}^{2} x_{B}}\right)$ - rapidity of the jet in the $L O$ hard subprocess.
Terms $\propto Y_{H}$ have cancelled, only terms suppressed as $e^{-2 Y_{H}}$ are left.

## Numerical results: cancellation of $\delta_{s}$ and $\delta_{c}$-dependence




Red $-\delta_{c}=3 \times 10^{-3} \delta_{s}$, blue $-\delta_{c}=10^{-4} \delta_{s}$. Dashed - analytic part, dotted - numerical part, solid - sum; green-dashed line - double precision.
MRK-subtracted NLO converges very quickly, but NLO correction is negative and > LO! For MMRK - NLO correction is smaller!

## Numerical results: inclusive structure function



Dotted lines: blue - LO CPM, orange - NLO CPM; dashed line - LO PRA with DL UPDF; solid lines: yellow - NLO PRA with MRK subtraction, red - NLO PRA with MMRK subtraction.

## Numerical results: jet $p_{T}$-spectrum



Thin dashed line - LO CPM, thick dashed line - LO PRA with DL UPDF. Solid lines: yellow - NLO PRA with MRK subtraction, red NLO PRA with MMRK subtraction.

## Distribution of NLO correction over $\mathbf{q}_{T 1}$

Why NLO correction to inclusive SF is larger at higher $Q^{2}$ ?


Small-q $\mathbf{q}_{T 1}$ asymptotics of analytic part of the NLO correction (black dash-dotted line):

$$
H_{\mathbf{q}_{T 1} \rightarrow 0}^{(\mathrm{NLO})}=\frac{\bar{\alpha}_{s} C_{A}}{2 \pi}\left[\frac{11}{3} \ln \left(\frac{\mu^{2}}{\mathbf{q}_{T 1}^{2}}\right)-\ln ^{2}\left(\frac{Q^{2}}{\mathbf{q}_{T 1}^{2}}\right)\right]
$$

Dashed lines - negative contribution, solid
lines - positive contributions. Blue solid line

- LO.

The doubly-logarithmic corrections $\sim \ln ^{2}\left(Q^{2} / \mathbf{q}_{T 1}^{2}\right)$ can be further factorized into UPDF.

## Analytic part with $\mu_{Y}$-dependence

The $\mu_{Y}^{\text {(st.) }}=\left(Q^{2}+\mathbf{q}_{T 1}^{2}\right) /\left|\mathbf{q}_{T 1}\right|$ corresponds to $Y_{\mu}=Y_{H}$. Introducing: $\mu_{Y}^{2} \rightarrow\left(\mu_{Y}^{(\text {st. })}\right)^{2} \xi_{\mu}$ one obtains:

$$
\begin{aligned}
& H_{\text {analyt. }}^{(\mathrm{NLO})}=\frac{\bar{\alpha}_{s} C_{A}}{2 \pi}\left[\frac{67}{6}-\frac{\pi^{2}}{2}+\frac{11}{3} \ln \left(\frac{\mu^{2}}{\mathbf{q}_{T 1}^{2}}\right)+2 \mathrm{Li}_{2}\left(1-\frac{Q^{2}}{\mathbf{q}_{T 1}^{2}}\right)\right. \\
& +2 \ln (1+\xi)(\ln \xi-\ln (1+\xi))+\ln \delta_{c}\left(2 \ln (1+\xi)-\frac{11}{6}-2 \ln \delta_{s}\right) \\
& -\frac{1}{2} \ln \xi_{\mu}\left(4 \ln \delta_{s}+\ln \xi_{\mu}-4 \ln \left(\xi_{\mu}+\xi\right)\right) \\
& \left.-\ln ^{2}\left(\xi_{\mu}+\xi\right)-2 \operatorname{Li}_{2}(-\xi)-2 \operatorname{Li}_{2}\left(\frac{\xi}{\xi_{\mu}+\xi}\right)+O(\epsilon)\right] .
\end{aligned}
$$

With the choice $\xi_{\mu}=\left(\mathbf{q}_{T 1}^{2} / Q^{2}\right)^{\sqrt{2}}$ the $\ln ^{2}\left(\mathbf{q}_{T 1}^{2} / Q^{2}\right)$ is removed, so the optimal scale-choice for $\mu_{Y}$ is:

$$
\mu_{Y}^{2}=\min \left(\left(\frac{\mathbf{q}_{T 1}^{2}}{Q^{2}}\right)^{\sqrt{2}}, 1\right) \frac{\left(Q^{2}+\mathbf{q}_{T 1}^{2}\right)^{2}}{\mathbf{q}_{T 1}^{2}}
$$

## Future plans

- Get "the number" out of full MMRK evolution equation. Add Reggeized quark contributions.
- Formalism by [van Hameren, 2017] is useful to automatize NLO loop corretions and is fully compatible with our scheme
- Reproduce the physical $e+p$ DIS for the phenomenological cross-check
- Another cross-checks: inclusive jet, prompt-photon production
- Interesting target: Drell-Yan, especially angular distributions of leptons and Lam-Tung-relation violating effects (NNLO in CPM!)
- $D$-meson production at NLO as a cross-check for heavy-flavor production
- Challenging task: heavy quarkonium production in NRQCD-factorization at NLO


## Thank you for your attention!

## Backup: rapidity divergences in real corrections

Constraint $\tilde{\partial}_{+} R_{-}=\tilde{\partial}_{-} R_{+}=0$. Lipatov's vertex $\left(k=q_{1}-q_{2}, k^{2}=0\right)$ :

$$
\Gamma_{+\mu-}=-\left(\tilde{n}_{+} \tilde{n}_{-}\right)\left(\left(q_{1}+q_{2}\right)_{\mu}+q_{1}^{2} \frac{\tilde{n}_{\mu}^{-}}{\tilde{q}_{2}^{-}}+q_{2}^{2} \frac{\tilde{n}_{\mu}^{+}}{\tilde{q}_{1}^{+}}\right)+2\left(\tilde{q}_{1}^{+} \tilde{n}_{\mu}^{-}+\tilde{q}_{2}^{-} \tilde{n}_{\mu}^{+}\right),
$$

without modified constraint, the Slavnov-Taylor identity
$k^{\mu} \Gamma_{+\mu-}=0$ is violated by terms $O(r)$.
The square of regularized LV:


$$
\begin{array}{r}
\Gamma_{+\mu-} \Gamma_{+\nu-} P^{\mu \nu}=\frac{16 \mathbf{q}_{T 1}^{2} \mathbf{q}_{T 2}^{2}}{\mathbf{k}_{T}^{2}} f(y), \\
\leftarrow f(y)=\frac{1}{\left(r e^{-y}+e^{y}\right)^{2}\left(r e^{y}+e^{-y}\right)^{2}}, \\
\int_{-\infty}^{+\infty} d y f(y)=-1-\ln r+O(r)
\end{array}
$$

## Backup: double-counting in the soft region

MRK subtraction term is IR-divergent in the soft region. $\Rightarrow$ We have to subtract integral of soft asymptotics of subtraction term over soft region from the integral of exact amplitude in the soft region. E.g. for $\hat{z} \rightarrow 0$ limit:

$$
\begin{array}{rl}
\mathcal{J}_{\text {MRK-soft }} & =\int_{0}^{\hat{z}_{m}} \frac{d \hat{z}}{\hat{z}} \int_{0}^{\mathbf{k}_{T}^{2}} \hat{z}^{2} \\
\left(\mathbf{k}_{T 1}^{2}\right)^{1+\epsilon} \\
+ & \int_{\hat{z}_{m}}^{2} \\
e^{2 Y_{H}} \delta_{s} & d \hat{z} \\
\mathbf{k}_{T 2}^{2} \hat{z}\left(\delta_{s}-e^{-2 Y_{H}} \int_{0} \frac{d \mathbf{k}_{T 1}^{2}}{\left(\mathbf{k}_{T 1}^{2}\right)^{1+\epsilon}},\right.
\end{array}
$$

where $z_{m}=\delta_{s} /\left(1+e^{-2 Y_{H}}\right)$.


## Backup: comparison with QCD

Regge limit of the one-loop amplitude for the process:

$$
\mathcal{O}(q)+g(P) \rightarrow g\left(k_{2}, Y_{H}\right)+g\left(k_{1}, y_{1}\right),
$$

has been reproduced as the sum of:

- One-Reggeon contribution (negative signature, Re+Im parts @ 1 loop):

- Two-Reggeon contribution (positive signature, only Im part @ 1 loop):



[^0]:    ${ }^{1}$ Based on: [M.N., Nucl.Phys., B946, 114715 (2019)] and [M.N., JHEP08(2020)055]
    ${ }^{2}$ Samara National Research University, Samara, Russia

