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Background

Proton helicity can be decomposed into spin and orbital angular
momentum (OAM) of quarks and gluons [Jaffe and Manohar, 1990]

1

2
= Sq + SG + Lq + LG (1)

where

Sq =

∫ 1

0
dx ∆Σ(x ,Q2) =

∫ 1

0
dx
∑
f

[
∆qf (x ,Q2) + ∆qf (x ,Q2)

]
. (2)

Experiments have measured Sq but can only include 0 < xmin ≤ x ≤ 1.

Objective: Find the contribution to Sq coming from ∆Σ as x → 0.
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Polarized Dipole Amplitudes

To learn about Sq, we consider two objects.

(i) Quark dipole amplitude:

Q(x210, z) =
zs

2Nc

〈
tr
[
Vx0V

†
x1

(σ)
]

+ tr
[
Vx1(σ)V †x0

]〉
SL

(z)

∼ ∆Σ(x ,Q2)
(3)

(ii) Gluon dipole amplitude

The bracket averages over the polarized target proton’s wave function.

= + + . . .
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Polarized Dipole Amplitudes

To learn about Sq, we consider two objects.

(i) Quark dipole amplitude

(ii) Gluon dipole amplitude:

G (x210, z) =
zs

2(N2
c − 1)

〈
Tr
[
Ux0U

†
x1

(λ)
]

+ Tr
[
Ux1(λ)U†x0

]〉
SL

(z)

(4)

The bracket averages over the polarized target proton’s wave function.

= + + . . .
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Evolution Equations

The dipole amplitudes obey integral equations resulting from
quark/gluon splitting outside the shockwave, e.g.

To the first order in αs , both G (x210, z) and Q(x210, z) evolve as

δQ(x210, z) ∼ αs

[ ∫
dz ′

z ′

∫
dx221
x221︸ ︷︷ ︸

DLA

+

∫
dz ′
∫

dx232
x232︸ ︷︷ ︸

LLAT

+

∫
dz ′

z ′

∫
dx221︸ ︷︷ ︸

LLAL

+ . . .

]

× (dipole amplitudes:G ,Q) .

(5)

The LLA terms (resumming αs ln 1
x ) are subleading to the DLA term

(resumming αs ln2 1
x ).
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DLA Evolution Equations

In a splitting in the limit z ′ � z , some regions in x221-integral yield the
DLA terms in the evolution equations.

Q(x210, z) = Q(0)(z) + αs

∫
dz ′

z ′

[
A

∫
dx221
x221︸ ︷︷ ︸

DLA

+B

∫
dx221︸ ︷︷ ︸

LLAL

]
(dipole amps)

(6)
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DLA Evolution Equations

In the limit Nc � 1, the DLA equations have been solved analytically
[Kovchegov et al, 2017], and the phenomenological implications are
being studied.

In the limit Nc ,Nf � 1, the DLA equations are more complicated.
[Kovchegov et al, 2016, 2019]
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DLA Numerical Solutions

The DLA-equations at large Nc&Nf have been solved numerically for
the asymptotic form of ∆Σ(x ,Q2) as x → 0 [Kovchegov and
Tawabutr, 2020].

Plot of sgn
[
∆Σ

(
x ,Q2

)]
ln
∣∣∆Σ

(
x ,Q2

)∣∣ vs x at fixed Q2 = 10 GeV2
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DLA Numerical Solutions

The DLA-equations at large Nc&Nf have been solved numerically for
the asymptotic form of ∆Σ(x ,Q2) as x → 0 [Kovchegov and
Tawabutr, 2020].

∆Σ(x ,Q2)
∣∣∣
Nc ,Nf�1

∼
(

1

x

)αh

√
αsNc
2π

cos

[
ω

√
αsNc

2π
ln

1

x
+ ϕ

]
, (7)

where

ω ≈ 0.220Nf

1 + 0.126Nf
. (8)

The intercept, αh, is roughly 2.3 with a weak dependence on Nf .

In the large-Nc limit,

∆Σ(x ,Q2)
∣∣∣
Nc�1

∼
(

1

x

)2.31
√

αsNc
2π

. (9)
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DLA Numerical Solutions

The DLA-equations at large Nc&Nf have been solved numerically for
the asymptotic form of ∆Σ(x ,Q2) as x → 0 [Kovchegov and
Tawabutr, 2020].

∆Σ(x ,Q2)
∣∣∣
Nc ,Nf�1

∼
(

1

x

)αh

√
αsNc
2π

cos

[
ω

√
αsNc

2π
ln

1

x
+ ϕ

]
, (10)

where

ω ≈ 0.220Nf

1 + 0.126Nf
. (11)

The oscillation period spans many units of ln 1
x .
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LLA Evolution Equations

At DLA, a logarithmic factor comes from longitudinal integral,
∫

dz ′

z ′ ,

and the other comes from transverse integral,
∫ dx221

x221
.

At LLA, single-logarithmic terms come from:

Terms with longitudinal logarithm only (LLAL):
∫

dz′

z′

∫
dx221

Terms with transverse logarithm only (LLAT):
∫
dz ′
∫ dx2

21

x2
21

The BK/JIMWLK evolution of unpolarized daughter dipoles
Running-coupling terms (lnµ2 vs ln s)

The LLA equations are non-linear. The derivation is in progress.
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LLAL Terms

The LLAL terms come from the splitting in the z ′ � z limit, but in
the region where x221-integral yields no additional logarithm.

Q(x210, z) = Q(0)(z) + αs

∫
dz ′

z ′

[
A

∫
dx221
x221︸ ︷︷ ︸

DLA

+B

∫
dx221︸ ︷︷ ︸

LLAL

]
(dipole amps)

(12)
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LLAT Terms

In the limit z ′ ∼ z , a parton splitting yields the LLAT terms.

Q(x210, z) = Q(0)(z) + αs

∫
dz ′ ∆P(z ′/z)

∫
dx232
x232

(dipole amps) (13)

Here, ∆P(z ′/z) is the polarized DGLAP splitting function.
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LLAT Terms

In the limit z ′ ∼ z , a parton splitting yields the LLAT terms.

Q(x210, z) = Q(0)(z) + αs

∫
dz ′ ∆P(z ′/z)

∫
dx232
x232

(dipole amps) (14)

Since z ′ ∼ z − z ′ ∼ z , neither x3 nor x2 is necessarily close to x1.

By momentum conservation, z ′x21 + (z − z ′)x31 = 0.
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LLA Evolution Equations – Next Steps

Include the effect of running coupling

Write systems of equations in the large-Nc and large-Nc&Nf limits

Solve the resulting equations for asymptotic behavior of ∆Σ(x ,Q2) as
x → 0.
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Conclusion

Quark’s helicity contribution follows evolution equations that contain
leading DLA terms and subleading LLA terms.

The DLA-order equations have been derived and numerically solved at
large Nc&Nf . The asymptotic form at small x shows an oscillation
with ln 1

x . The period spans many units of rapidity.

The LLA-order equations are in the process of derivation, in which
one has to include the effect of running coupling and write the system
of equations at large-Nc and large Nc&Nf .

Potential directions for future work

The complete evolution equations at LLA (in progress)
Analytic solution to DLA equation
More concrete implication to phenomenology
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The End
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