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an action formalism for reggeized gluons: 
Lipatov’s high energy effective action

[Lipatov; hep-ph/9502308]

...

...

basic idea:

correlator with regions 
localized in rapidity, 
significantly separated from 
each other 

factorize using auxiliary 
degree of freedom = 
the reggeized gluon

• action for reggeized quarks: 
[Lipatov,Vyazovsky hep-ph/0009340] 

• action for electroweak bosons:
[Gomez Bock, MH, Sabio Vera, 
2010.03621]

relevant kinematics: 
Multi-Regge-Kinematics 
(separated in rapidity & 
transverse momenta of same 
order of magnitude)

https://arxiv.org/abs/hep-ph/0009340
https://arxiv.org/abs/2010.03621
https://arxiv.org/abs/hep-ph/0009340
https://arxiv.org/abs/2010.03621


• idea: factorize QCD amplitudes in the high energy 
limit through introducing a new kind of field: the 
reggeized gluon A± (conventional QCD gluon:     )

• reggeized gluon globally charged 
under SU(NC)

2 The High-Energy E↵ective Action

Within the framework provided by Lipatov’s e↵ective action [11, 12], QCD amplitudes are
in the high energy limit decomposed into gauge invariant sub-amplitudes which are localized
in rapidity space. The e↵ective Lagrangian then describes the coupling of quarks ( ) and
gluon (vµ) fields to a new degree of freedom, the reggeized gluon field A±(x). The latter
is introduced as a convenient tool to reconstruct the complete QCD amplitudes in the high
energy limit out of the sub-amplitudes restricted to small rapidity intervals. Lipatov’s e↵ective
action is obtained by adding an induced term Sind. to the QCD action SQCD,

Se↵ = SQCD + Sind., (1)

where the induced term Sind. describes the coupling of the gluonic field vµ = �it
a
v
a
µ(x) to the

reggeized gluon field A±(x) = �it
a
A

a
±(x), with t

a a SU(Nc) generator in the fundamental
representation, tr(tatb) = �

ab
/2. For the definition of light-cone directions we follow the

conventions established in the original publication [11],

k
± = n

±
· k = n⌥ · k = k⌥, (2)

with n
±

· n
⌥ = 2 and (n±)2 = 0. This implies the following Sudakov decomposition of a four

momentum

k =
k
+

2
n
� +

k
�

2
n
+ + k =

k�
2

n+ +
k+

2
n� + k. (3)

Note that transverse momenta and coordinates will be denoted by bold letters. Furthermore

@±x
± = 2, @⌥x

± = 0 . (4)

High energy factorized amplitudes reveal strong ordering in plus and minus components of
momenta which leads to the following kinematic constraint obeyed by the reggeized gluon
field:

@+A�(x) = 0 = @�A+(x). (5)

Even though the reggeized gluon field is charged under the QCD gauge group SU(Nc), it is
defined to be invariant under local gauge transformation �LA± = 0. With the local gauge
transformations of gluon and quark fields given by

�Lvµ =
1

g
[Dµ,�L], �L = ��L . Dµ = @µ + gvµ, (6)

where Dµ denotes the covariant derivative and �L the parameter of the local gauge trans-
formations which decreases for x ! 1, the reggeized gluons fields are invariant under local
gauge transformations,

�LA± =
1

g
[A±,�L] = 0 . (7)
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underlying concept:
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• but invariant under local gauge transformation

→ gauge invariant factorization of QCD correlators

vs.

kinematics (strong ordering in light-cone 
momenta between different sectors):
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underlying idea: 
➜ integrate out specific details of 

(relatively) fast +/- fields 
➜ description in sub-amplitude local 

in rapidity: QCD Lagrangian + 
universal eikonal factor  

➜ effective field theory for each local 
rapidity cluster

Forward Higgs production at NLO in the heavy quark limit

May 20, 2018
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The kinetic term and the gauge invariant coupling of the reggeized gluon field to the QCD
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where the integral operator is implied to act on a unit constant matrix from the left. For
the definition of light-cone directions we follow the conventions established in the original
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(a) (b) (c1) (c2)

(d1) (d2) (d3) (e)

(f) (g1) (g2)
(h1)
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Figure 4: Diagrams for the two-loop trajectory in the e�ective action formalism. Tadpole-like con-
tributions are zero in dimensional regularization and are omitted.
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[Chachamis, MH, Madrigal, Sabio Vera;1202.0649, 1307.2591]

• determination of the self-energy of the reggeized gluon from the e�ective action, with
the reggeized gluon treated as a background field;

• subtraction of all disconnected contributions which contain internal reggeized gluon
lines.

Using a symmetric pole prescription as given in Sec. II.2, all diagrams with internal reggeized
gluon lines that would possibly contribute to the one loop self energy can be shown to vanish
and no subtraction is necessary. The contributing diagrams are shown in Fig. 3.

1 loop = + + + + +

Figure 3: Diagrams contributing to the one-loop reggeized gluon self-energy.

Keeping the O(fl, fl2), for fl æ Œ, terms and using the notation

ḡ2 = g2Nc�(1 ≠ ‘)
(4fi)2+‘

, (13)

we have the following result in d = 4 + 2‘ dimensions3:
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A
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B‘ ;
ifi ≠ 2fl

‘
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1
(1 + 2‘)‘

55 + 3‘

3 + 2‘
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nf

Nc

32 + 2‘

3 + 2‘

4 6<
. (14)

To determine the 2-loop self energy it is on the other hand needed to subtract disconnected
diagrams, whereas diagrams with multiple internal reggeized gluons can be shown to yield a
zero result, if the symmetric pole prescription of Sec. II.2 is used. Schematically one has

�(2)
A

fl; ‘,
q2

µ2

B

=
2 loop

=
2 loop

≠

1 loop

1 loop

, (15)

where the black blob denotes the unsubtracted 2-loop reggeized gluon self-energy, which is
obtained through the direct application of the Feynman rules of the e�ective action, with

3In the original result presented in [14] and reproduced in [21, 22] a finite result for the second and third
diagram has been erroneously included. This has been corrected in the result presented here.
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the reggeized gluon itself treated as a background field. Its determination will be discussed
in detail in the forthcoming section. The (bare) two-loop reggeized gluon propagators then
reads

G
1
fl; ‘, q2, µ2

2
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q2

Y
]

[1 + i/2
q2 �

A

fl; ‘,
q2

µ2

B

+
C

i/2
q2 �

A

fl; ‘,
q2

µ2

BD2
+ . . .

Z
^

\ , (16)

with

�
A

fl; ‘,
q2

µ2

B

= �(1)
A

fl; ‘,
q2

µ2

B
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A
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q2

µ2

B

+ . . . (17)

where the dots indicate higher order terms. As discussed in Sec. II.1 and as directly apparent
from Eq. (14), the reggeized gluon self-energies are divergent in the limit fl æ Œ. In [14, 15]
it has been demonstrated by explicit calculations that these divergences cancel at one-loop
level, for both quark-quark and gluon-gluon scattering amplitudes, against divergences in the
couplings of the reggeized gluon to external particles. The entire one-loop amplitude is then
found to be free of any high energy singularity in fl. High energy factorization then suggests
that such a cancellation holds also beyond one loop. Starting from this assumption, it is
possible to define a renormalized reggeized gluon propagator through

GR(M+, M≠; ‘, q2, µ2) = G(fl; ‘, q2, µ2)
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3

M+
Ô

q2 , fl; ‘, q2
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4
Z≠
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4 , (18)

where the renormalization factors need to cancel against corresponding renormalization fac-
tors associated with the vertex to which the reggeized gluon couples with ‘plus’ (Z+) and
‘minus’ (Z≠) polarization. For explicit examples we refer the reader to [15, 21]. In their most
general form these renormalization factors are parametrized as
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with the coe�cient of the fl-divergent term given by the gluon Regge trajectory Ê(‘, q2). It
is assumed to have the following perturbative expansion
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+ . . . , (20)

and is to be determined by the requirement that the renormalized reggeized gluon propagator
must, at each loop order, be free of fl divergences. At one loop we get from Eq. (14)

Ê(1)
A
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q2

µ2

B

= ≠
2ḡ2�2(1 + ‘)
�(1 + 2‘)‘

A
q2

µ2

B‘

. (21)

The function f±(‘, q2) parametrizes finite contributions and is, in principle, arbitrary. While
symmetry of the scattering amplitude requires f+ = f≠ = f , Regge theory suggests fixing
it in such a way that terms which are not enhanced in fl are entirely transferred from the
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level, for both quark-quark and gluon-gluon scattering amplitudes, against divergences in the
couplings of the reggeized gluon to external particles. The entire one-loop amplitude is then
found to be free of any high energy singularity in fl. High energy factorization then suggests
that such a cancellation holds also beyond one loop. Starting from this assumption, it is
possible to define a renormalized reggeized gluon propagator through

GR(M+, M≠; ‘, q2, µ2) = G(fl; ‘, q2, µ2)

Z+
3

M+
Ô

q2 , fl; ‘, q2

µ2

4
Z≠

3
M≠
Ô

q2 , fl; ‘, q2

µ2

4 , (18)

where the renormalization factors need to cancel against corresponding renormalization fac-
tors associated with the vertex to which the reggeized gluon couples with ‘plus’ (Z+) and
‘minus’ (Z≠) polarization. For explicit examples we refer the reader to [15, 21]. In their most
general form these renormalization factors are parametrized as

Z±
A

M±

q2 , fl; ‘,

q2

µ2

B

= exp
CA

fl

2 ≠ ln M±

q2

B

Ê

A

‘,
q2

µ2

B

+ f±
A

‘,
q2

µ2

BD

, (19)

with the coe�cient of the fl-divergent term given by the gluon Regge trajectory Ê(‘, q2). It
is assumed to have the following perturbative expansion

Ê

A

‘,
q2

µ2

B

= Ê(1)
A

‘,
q2

µ2

B

+ Ê(2)
A

‘,
q2

µ2

B

+ . . . , (20)

and is to be determined by the requirement that the renormalized reggeized gluon propagator
must, at each loop order, be free of fl divergences. At one loop we get from Eq. (14)

Ê(1)
A

‘,
q2

µ2

B

= ≠
2ḡ2�2(1 + ‘)
�(1 + 2‘)‘

A
q2

µ2

B‘

. (21)

The function f±(‘, q2) parametrizes finite contributions and is, in principle, arbitrary. While
symmetry of the scattering amplitude requires f+ = f≠ = f , Regge theory suggests fixing
it in such a way that terms which are not enhanced in fl are entirely transferred from the
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non-trivial test:

2 loop gluon trajectory 
from high energy 
singularity of the 
reggeized gluon 
propagator 



A short appraisal of Lipatov’s 
high energy effective action

• natural framework to address multi-reggeized gluon exchanges [MH, 0908.2576], [Braun et.al. 
hep-ph/0612323, 1103.3618, 1402.4786, 1702.04796], [Bondarenko, Lipatov, Prygarin, 
Pozdnyakov, 1708.05183] 

• in particular: contains Balitsky-JIMWLK evolution (=Color Glass Condensate formalism) & 
background field propagators [MH, 1802.06755] 

• NLO impact factors for jets without and with rapidity gap (2 Reggeon state) [MH, Madrigal, 
Murdaca, Sabio Vera, 1404.2937, 1406.5625, 1409.6704]  

• 2 scale processes [Nefedov; 1902.11030] 

• Complementary (dilute): spinor helicity amplitudes based formalism [van Hameren, Kotko, Kutak; 
1211.0961], [van Hameren, Kutak, Salwa; 1308.2861]

→ well tested effective action formalism 
for high energy factorization

momentum directly with the Wilson line:

Z
dk

�
1

2⇡

Z
dk

�
2

2⇡
2⇡�(k�1 + k

�
2 ) c1, k1 c2, k2

= (ig)2 ·
1

2
(tc1tc2 + t

c2t
c1)

= (ig)2S2(12) . (79)

In the above we used a short-hand notation, introduced in [28],

[i, j] ⌘ [tci , tcj ] Sn(1 . . . n) ⌘
1

n!

X

i1,...,in

t
ci1 · · · t

cin (80)

where in the second term the sum is taken over all permutations of the numbers 1, . . . , n.
Using this notation, a possible decomposition of a color tensor with two adjoint color indices
is given by the following basis,

[1, 2], S2(12) . (81)

In [28], this decomposition has been used to construct the the pole prescription for induced
vertices, by projecting out the anti-symmetric sector of the complete color structure of a Wil-
son line. Using this pole prescription and associating the integration over minus momentum
similar with the 1 reggeized gluon to 2 reggeized gluon splitting, similar to Eq. (79), it is then
straightforward to demonstrate that diagrams such as Fig. 3.e vanishes. We note that this
holds for all splittings of a single reggeized gluons into n reggeized gluons at tree-level, i.e.
such splittings are generally absent within this particular pole prescription5 after integration
over corresponding light-cone momenta. The only diagrams left are therefore Fig. 3.c and
Fig. 3.d, where the induced vertex associated with Fig. 3.d, carries the color tensor [1, 2],
providing therefore the anti-symmetric contribution missing in Eq. (79). For an explicit de-
composition of diagrams such as Fig. 3.a and Fig. 3.b, we refer the interested reader to [21,28].

(a) (b) (c) (d) (e)

Figure 4: Three gluon exchange within the high energy e↵ective action. Left: The anti-symmetric
contribution. Center: The contribution with mixed symmetry. Right: The symmetric contribution.

The corresponding symmetry decomposition for three adjoint color indices is provided by
the following six tensors:

[[3, 1], 2], [[3, 2], 1], S2([1, 2]3), S2([1, 3]2), S2([2, 3]1), S3(123) . (82)

5We note that a prescription di↵erent from the one of [28] has been used in [20]. We point out the possibility
that the arguments presented here may not hold for this particular prescription.

22

https://arxiv.org/abs/0908.2576
https://arxiv.org/abs/hep-ph/0612323
https://arxiv.org/abs/1708.05183
https://arxiv.org/abs/0908.2576
https://arxiv.org/abs/hep-ph/0612323
https://arxiv.org/abs/1708.05183


Forward Higgs 
production

7

proton

proton

Higgs

large 
difference 
in rapidity 
Δη

Why is this of interest?

• Higgs phenomenology: only for events 
which identify a forward Higgs 

• Higgs + jet configurations with 
resummation of   
e.g. [Celiberto, Ivanov, Mohammed, Papa; 
2008.00501] 

• program to define combined DGLAP & 
low x evolution with TMD splitting 
kernels [MH, Kusina, Kutak, Serino, 
1711.04587, 1607.01507], see also 
yesterday's talk by Lissa 
Keersmaekers 

• Higgs = a colorless final state & gives 
access to the gluon distribution

(αsΔη)n

https://arxiv.org/abs/2008.00501
https://arxiv.org/abs/1711.04587
https://arxiv.org/abs/1607.01507
https://arxiv.org/abs/2008.00501
https://arxiv.org/abs/1711.04587
https://arxiv.org/abs/1607.01507


How to organize an NLO (and beyond) calculation 
using the high energy effective action?

8

- fully worked for virtual corrections → determination of the 2 loop 
Regge trajectory 

- cross-checked & works

real corrections:  

• essentially the same 

• but deal with Multi-Regge-Kinematics 
means: 

- strong ordering in rapidity 

-  in general arbitrary transverse momenta  

• need to work with convolution integrals instead of products  
in general not a problem & well known from e.g. conventional collinear 
factorization 

couplings of the reggeized gluon to external particles. The entire one-loop amplitude is then
found to be free of any high energy singularity in ⇢. Consistency of high energy factorization
as formulated within the high energy e↵ective action requires that such a cancellation holds
also beyond one loop. To make this cancelation explicit, we introduce transition functions Z±.
For explicit examples we refer the reader to [10,11]. In particular we define the renormalized
reggeized gluon propagator as

G
R(⌘; ✏,q2

, µ
2) =

G(⇢; ✏,q2
, µ

2)

Z+
⇣
⌘, ⇢; ✏, q

2

µ2

⌘
Z�

⇣
⌘, ⇢; ✏, q

2

µ2

⌘ , (36)

In their most general form these transition functions are parametrized as

Z
±
✓
⌘, ⇢; ✏,

q2

µ2

◆
= exp


⇢� ⌘

2
!

✓
✏,
q2

µ2

◆
+ f

±
✓
✏,
q2

µ2

◆�
. (37)

The coe�cient of the ⇢-divergent term defines the gluon Regge trajectory !(✏,q2),

!

✓
✏,
q2

µ2

◆
= !

(1)

✓
✏,
q2

µ2

◆
+ !

(2)

✓
✏,
q2

µ2

◆
+ . . . , (38)

which is determined by the requirement that the renormalized reggeized gluon propagator
must be free of high energy divergences, i.e. ⇢ independent. At one loop one obtains

!
(1)

✓
✏,
q2

µ2

◆
= �

2ḡ2�2(1 + ✏)

�(1 + 2✏)✏

✓
q2

µ2

◆✏

. (39)

The function f
±(✏,q2) parametrizes finite contributions and is, in principle, arbitrary. Sym-

metry of the scattering amplitude requires f
+ = f

� = f , Regge theory suggests fixing it in
such that terms which are not enhanced in ⇢ are entirely transferred from the reggeized gluon
propagators to the vertices, to which the reggeized gluon couples. With

f

✓
✏,
q2

µ2

◆
= f

(1)

✓
✏,
q2

µ2

◆
+ f

(2)

✓
✏,
q2

µ2

◆
. . . (40)

we obtain from Eq. (29)

f
(1)

✓
✏,
q2

µ2

◆
=

ḡ
2�2(1 + ✏)

�(1 + 2✏)

✓
q2

µ2

◆✏
(�1)

(1 + 2✏)2✏


5 + 3✏

3 + 2✏
�

nf

Nc

✓
2 + 2✏

3 + 2✏

◆�
, (41)

and consequently

!
(2)

✓
✏,
q2

µ2

◆
= lim

⇢!1

1

⇢


⌃(2)

(�2iq2)
+

⇢
2

2

⇣
!
(1)

⌘2
+ 2⇢f (1)

!
(1)

�
, (42)

where we omitted at the right hand side the dependencies on ✏ and q2
/µ

2 and expanded ⌃(1)

in terms of the functions !(1) and f
(1). We obtain

!
(2)(q2) =

(!(1)(q2))2

4


11

3
�

2nf

3Nc
+

✓
⇡
2

3
�

67

9

◆
✏+

✓
404

27
� 2⇣(3)

◆
✏
2

�
, (43)
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the evaluation of integrals. Keeping only finite and divergent terms, one finds in d = 4 + 2✏
dimensions2:

⌃(1)
⇣
⇢; ✏, q

2

µ2

⌘

(�2iq2)
= ḡ

2
c�

✓
q2

µ2

◆✏⇢
i⇡ � 2⇢

✏
�

5 + 3✏�
nf

Nc
(2 + 2✏)

(1 + 2✏)(3 + 2✏)✏

�
, (30)

and

ḡ
2 =

g
2
Nc�(1� ✏)

(4⇡)2+✏
, c� =

�2(1 + ✏)

�(1 + 2✏)
. (31)

To determine the 2-loop self energy it is now needed to subtract disconnected diagrams,
whereas diagrams with multiple internal reggeized gluons can be shown to yield zero result.
Schematically one has

⌃(2)

✓
⇢; ✏,

q2

µ2

◆
=

2 loop
=

2 loop
�

1 loop

1 loop

. (32)

The black blob denotes the unsubtracted 2-loop reggeized gluon self-energy. It is obtained
through the direct application of the Feynman rules of the e↵ective action (with the reggeized
gluon itself treated as a background field). The resulting 2-loop integrals have been deter-
mined in [12,13]. The result for nf flavor reads

⌃(2)

✓
⇢,

q2

µ2

◆
= (�2iq2)

g
4
N

2
c

(4⇡)4

⇢
�


2

✏2
+

4(1� ⌧)

✏
+ 4(1� ⌧)2 �

⇡
2

3

�
⇢
2

+


1

3✏2
+

1

9✏
+

⇡
2

3✏
�

2⌧

3✏
+

⇡
2(11� 12⌧)

18
+

16

27
�

2

9
⌧ +

2

3
⌧
2
� 2⇣(3)

◆�
⇢

�

+
nf

Nc

✓
2

3✏
+

nf (6� 36⌧)

27✏
+

32� 3⇡2
� 12⌧ + 36⌧2

27

◆
+O(✏) +O(⇢0). (33)

with ⌧ = 1� ln q2e�E
4⇡µ2 . To obtain the gluon trajectory, we need to construct next the (bare)

two-loop reggeized gluon propagators

G
�
⇢; ✏,q2

, µ
2
�
=

i/2

q2

(
1 +

i/2

q2
⌃

✓
⇢; ✏,

q2

µ2

◆
+


i/2

q2
⌃

✓
⇢; ✏,

q2

µ2

◆�2
+ . . .

)
, (34)

with the reggeized gluon self energy

⌃

✓
⇢; ✏,

q2

µ2

◆
= ⌃(1)

✓
⇢; ✏,

q2

µ2

◆
+ ⌃(2)

✓
⇢; ✏,

q2

µ2

◆
+ . . . . (35)

Apparently Eq. (29) is divergent in the limit ⇢ ! 1. In [10,11] it has been demonstrated by
explicit calculations that these divergences cancel at one-loop level against divergences in the

2In the original result present in [10] and reproduced in [16], a finite result for the second and third diagram
has been erroneously included, see also [11–13]
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Starting point: hybrid factorization

9

with H the scalar (Higgs) field and gH the e↵ective coupling [68,69]

gH = �
↵s

3⇡v

⇣
1 +

↵s

4⇡
11
⌘
+O(↵3

s) . (37)

Since the top quark has been integrated out, the strong coupling ↵s is evaluated for nf = 5
flavors and v

2 = 1/(
p
2GF ) with GF the Fermi constant. Working under the assumption

that multi-reggeized gluon exchanges can be neglected, the hadronic di↵erential cross section
is factorized into

d
3
�

d2pdxH
=

Z
1

xH

dz

z

X

a=q,g

fa

⇣
xH

z
, µ

2

F

⌘Z
d
2k

⇡

dĈag⇤!H(µ2

F , ⌘a; z,k)

d2pdxH
G(⌘a,k), (38)

where G(⌘a,k) denotes the unintegrated gluon distribution of hadron B which parametrizes
non-perturbative input of hadron B and is subject to BFKL evolution; ⌘a is a factorization
parameter associated with the highest gluon rapidity absorbed into the unintegrated gluon
density. In terms of the elements defined in the previous section we have

G(⌘a,k, Q0) =

Z
d
2qGR(⌘a,k, q)h

ugd(q, Q0), (39)

where h
ugd is obtained as the convolution of partonic impact factor and parton distribu-

tion functions. In particular, collinear singularities, which arise from the infra-red region of
transverse momentum integration are assumed to be absorbed into the parton distribution
function of hadron B following the general procedure outlined in [70], see also [18, 71]. The
dependence on the scale Q0 is understood to arise as a consequence of such a factorization
of collinearly enhanced contributions. For the partonic di↵erential coe�cient, we assume the
following perturbative expansion

d
3
Ĉ

NLO
ag⇤!H

dxHd2p
= �0

0

@d
3
Ĉ

(0)

ag⇤!H

dxHd2p
+

↵s

2⇡
·
d
3
Ĉ

(1)

pg⇤!H

dxHd2p
+ . . .

1

A . a = q, g, (40)

With

d
3
h
(0)

ag⇤!H

dxHd2p
= �0

Z
dk

�

k�
�
(2)(p� k)�(1� z)�

✓
1�

M
2

H + k2

p
+
a k

�

◆
, �0 =

g
2

H⇡

8(N2
c � 1)

, (41)

we have

dĈ
(0)

gg⇤!H(µ2

F , ⌘a; z,k)

d2pdxH
= �

(2)(p� k)�(1� z), (42)

at leading order, while the corresponding contribution from the quark-channel vanishes. In
the following we will determine the next-to-leading order corrections to this impact factor.
This will be the main result of this paper.
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collinear parton 
distribution of 
proton 1: large x

Higgs production in 
fragmentation/forward region 
of proton 1

unintegrated gluon distribution 
of proton 2: low x 

- off-shell → high 
energy 
factorization 

- defined through 2 
reggeized state

object of interest: 
coefficientnot included: 

• multiple reggeized gluon exchange 
(Glauber gluons) 

• no high density effects 
• possible, but beyond this work

with H the scalar (Higgs) field and gH the e↵ective coupling [68,69]

gH = �
↵s

3⇡v

⇣
1 +

↵s

4⇡
11

⌘
+O(↵3

s) . (37)

Since the top quark has been integrated out, the strong coupling ↵s is evaluated for nf = 5
flavors and v

2 = 1/(
p
2GF ) with GF the Fermi constant. Working under the assumption

that multi-reggeized gluon exchanges can be neglected, the hadronic di↵erential cross section
is factorized into

d
3
�

d2pdxH
=

Z
1

xH

dz

z

X

a=q,g

fa

⇣
xH

z
, µ

2

F

⌘Z
d
2k

⇡

dĈag⇤!H(µ2

F , ⌘a; z,k)

d2pdxH
G(⌘a,k), (38)

where G(⌘a,k) denotes the unintegrated gluon distribution of hadron B which parametrizes
non-perturbative input of hadron B and is subject to BFKL evolution; ⌘a is a factorization
parameter associated with the highest gluon rapidity absorbed into the unintegrated gluon
density. In terms of the elements defined in the previous section we have

G(⌘a,k, Q0) =

Z
d
2qGR(⌘a,k, q)h

ugd(q, Q0), (39)

where h
ugd is obtained as the convolution of partonic impact factor and parton distribu-

tion functions. In particular, collinear singularities, which arise from the infra-red region of
transverse momentum integration are assumed to be absorbed into the parton distribution
function of hadron B following the general procedure outlined in [70], see also [18, 71]. The
dependence on the scale Q0 is understood to arise as a consequence of such a factorization
of collinearly enhanced contributions. For the partonic di↵erential coe�cient, we assume the
following perturbative expansion

d
3
Ĉ

NLO
ag⇤!H

dxHd2p
= �0

0

@d
3
Ĉ

(0)

ag⇤!H

dxHd2p
+

↵s

2⇡
·
d
3
Ĉ

(1)

pg⇤!H

dxHd2p
+ . . .

1

A . a = q, g, (40)

With

d
3
h
(0)

ag⇤!H

dxHd2p
= �0

Z
dk

�

k�
�
(2)(p� k)�(1� z)�

✓
1�

M
2

H + k2

p
+
a k

�

◆
, �0 =

g
2

H⇡

8(N2
c � 1)

, (41)

we have

dĈ
(0)

gg⇤!H(µ2

F , ⌘a; z,k)

d2pdxH
= �

(2)(p� k)�(1� z), (42)

at leading order, while the corresponding contribution from the quark-channel vanishes. In
the following we will determine the next-to-leading order corrections to this impact factor.
This will be the main result of this paper.
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Using Eq. (25), it is then straightforward to show that

d

d⌘a
GR(⌘a, ⌘b;k1,k2) =

h
K

(1)(k1,k2)⌦GR(⌘a, ⌘b)
i
(k1,k2)

d

d⌘b
GR(⌘a, ⌘b;k1,k2) =

h
GR(⌘a, ⌘b)⌦K

(1)(k1,k2)
i
(k1,k2). (30)

Note that through imposing,

GR(⌘b, ⌘b;k1,k2) = �
(2+2✏)(k1 + k2), and ⌘a > ⌘b, (31)

no over-counting occurs. With all factors fixed, we insert now Eq. (23) into the NLO cross
section Eq. (22), which then immediately leads to

d�
NLO

ab = [Ca,R(⌘a)⌦GR(⌘a, ⌘b)⌦ Cb,R(⌘b)] , (32)

where

Ca,R(⌘a;k1) ⌘
h
Ca(⇢)⌦ Z

+

⇣
⇢

2
� ⌘a

⌘i
(k1),

Cb,R(⌘b;k2) ⌘
h
Z

+

⇣
⇢

2
+ ⌘b

⌘
⌦ Cb(⇢)

i
(k2) . (33)

In the following paragraph we will provide an explicit verification of this procedure, through
applying it to the forward Higgs impact factor. For simplicity we note that the finite coe�-
cient is at NLO given by the following general expression,

C
NLO

R (k) = h
(0)

a (k) + h
(1)

a (k) + h
(0)

a ⌦

h
(�

⇢

2
� ⌘a)K

(1)
� f

�,(1)
i
(k)

= h
(0)

a (k) + h
(1)

a (k, ⇢)�
↵sNc(

⇢
2
+ ⌘a)

⇡

Z
d
2+2✏r

r2
h
(0)

a

�
(r + k)2

��

+ h
(0)

a (k)
↵s

2⇡

✓
k2

µ2

◆✏ 
CA(⇢+ 2⌘a)

✏
+

1

✏

✓
5CA

6
�

2nf

6

◆
�

31CA

18
+

10nf

18

�
. (34)

3 The impact factor for forward Higgs production

We consider collisions of two hadrons A and B with momenta pA,B = p
±
A,Bn

⌥
/2 and squared

center of mass energy s = p
+

Ap
�
B with inclusive production of an on-shell Higgs boson in the

fragmentation region of hadron A. The four momentum of the Higgs boson p and its rapidity
⌘H are parametrized as

p = xHpA +
M

2

H + p2

xHs
pB + pT , ⌘H = ln

xHp
+

Ap
p2

, (35)

where pT is the embedding of the Euclidean Higgs transverse momentum p into Minkowski
space. To describe the coupling of the Higgs boson to the gluonic field, we make use of the
heavy top limit and employ the following e↵ective Lagrangian [66,67],

Le↵ = �
1

4
gHHF

a
µ⌫F

µ⌫
a (36)

8

ηH = ln
xH s

p2 + M2
H



Tree level:

10

conventional gluon

reggeized = high 
energy factorized 
gluon

coupling Higgs gluon field 
through effective Lagrangian 
( )mt → ∞

Using Eq. (25), it is then straightforward to show that

d

d⌘a
GR(⌘a, ⌘b;k1,k2) =

h
K

(1)(k1,k2)⌦GR(⌘a, ⌘b)
i
(k1,k2)

d

d⌘b
GR(⌘a, ⌘b;k1,k2) =

h
GR(⌘a, ⌘b)⌦K

(1)(k1,k2)
i
(k1,k2). (30)

Note that through imposing,

GR(⌘b, ⌘b;k1,k2) = �
(2+2✏)(k1 + k2), and ⌘a > ⌘b, (31)

no over-counting occurs. With all factors fixed, we insert now Eq. (23) into the NLO cross
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In the following paragraph we will provide an explicit verification of this procedure, through
applying it to the forward Higgs impact factor. For simplicity we note that the finite coe�-
cient is at NLO given by the following general expression,
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3 The impact factor for forward Higgs production

We consider collisions of two hadrons A and B with momenta pA,B = p
±
A,Bn

⌥
/2 and squared

center of mass energy s = p
+

Ap
�
B with inclusive production of an on-shell Higgs boson in the

fragmentation region of hadron A. The four momentum of the Higgs boson p and its rapidity
⌘H are parametrized as

p = xHpA +
M

2

H + p2

xHs
pB + pT , ⌘H = ln

xHp
+

Ap
p2

, (35)

where pT is the embedding of the Euclidean Higgs transverse momentum p into Minkowski
space. To describe the coupling of the Higgs boson to the gluonic field, we make use of the
heavy top limit and employ the following e↵ective Lagrangian [66,67],

Le↵ = �
1

4
gHHF

a
µ⌫F

µ⌫
a (36)
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with H the scalar (Higgs) field and gH the e↵ective coupling [68,69]

gH = �
↵s

3⇡v

⇣
1 +

↵s

4⇡
11

⌘
+O(↵3

s) . (37)

Since the top quark has been integrated out, the strong coupling ↵s is evaluated for nf = 5
flavors and v

2 = 1/(
p
2GF ) with GF the Fermi constant. Working under the assumption

that multi-reggeized gluon exchanges can be neglected, the hadronic di↵erential cross section
is factorized into

d
3
�

d2pdxH
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Z
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dz
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X

a=q,g
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⇣
xH

z
, µ

2

F

⌘Z
d
2k

⇡

dĈag⇤!H(µ2

F , ⌘a; z,k)

d2pdxH
G(⌘a,k), (38)

where G(⌘a,k) denotes the unintegrated gluon distribution of hadron B which parametrizes
non-perturbative input of hadron B and is subject to BFKL evolution; ⌘a is a factorization
parameter associated with the highest gluon rapidity absorbed into the unintegrated gluon
density. In terms of the elements defined in the previous section we have

G(⌘a,k, Q0) =

Z
d
2qGR(⌘a,k, q)h

ugd(q, Q0), (39)

where h
ugd is obtained as the convolution of partonic impact factor and parton distribu-

tion functions. In particular, collinear singularities, which arise from the infra-red region of
transverse momentum integration are assumed to be absorbed into the parton distribution
function of hadron B following the general procedure outlined in [70], see also [18, 71]. The
dependence on the scale Q0 is understood to arise as a consequence of such a factorization
of collinearly enhanced contributions. For the partonic di↵erential coe�cient, we assume the
following perturbative expansion

d
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dxHd2p
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@d
3
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(0)
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dxHd2p
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·
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3
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+ . . .

1

A . a = q, g, (40)

With
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dk
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k�
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(2)(p� k)�(1� z)�
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1�

M
2

H + k2

p
+
a k

�

◆
, �0 =

g
2

H⇡

8(N2
c � 1)

, (41)

we have

dĈ
(0)

gg⇤!H(µ2

F , ⌘a; z,k)

d2pdxH
= �

(2)(p� k)�(1� z), (42)

at leading order, while the corresponding contribution from the quark-channel vanishes. In
the following we will determine the next-to-leading order corrections to this impact factor.
This will be the main result of this paper.
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Figure 2: Feynman diagrams for real correction in the gluon (left) and quark (right) channels re-

spectively. Here the wavy line indicates the o↵-shell reggeized gluon state. The gray vertex indicates

the gluon-gluon- reggeized gluon which is obtained as a combination of a first order induced vertex and

the three-gluon vertex, see second line. The quark channel includes both contributions due to quarks

and anti-quarks.

3.1 Virtual corrections

Virtual corrections to the operator �1

2
tr[Gµ⌫G

µ⌫ ] have been calculated in [65]. Adapting the
conventions of that paper to the ones used here we find:

dh
(1)

gg⇤!H(z,k)

d2pdxH
=

dh
(0)

gg⇤!H(z,k)

d2pdxH
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M
2

H

k2

◆
+
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2

6
+

49

9

�
+ 11�

10

9
nf

�

(43)

where we also added the contribution due to the 1-loop corrections of the Higgs-gluon-gluon
coupling in the heavy quark limit, Eq. (37).

3.2 Real corrections

Real corrections obtain both contributions from the gluon and the quark channel. The
relevant Feynman diagrams are depicted in Fig. 2. Our convention for momenta is as follows

g(pa) + r+(k) ! H(p) + g(r), (44)

where we replace g $ q, q̄ for the contributions with initial and final (anti-) quark states. We
further use 0 < z < 1 to parametrize the initial parton momentum fraction, carried on by
the Higgs particle. For the gluon channel we find

d
3
h
(0)

gg⇤!Hg(z,k)

dxHd2p
=

↵sCA�0

2⇡✏k2
HggH(z,p,k)✓

⇣
⌘g +

⇢

2

⌘
(45)

where ⌘g = ln
(1�z)xHp+

A

z
p
r2

is the gluon rapidity and ⇢ the regulator for the high energy diver-

gence, which we take in the limit ⇢ ! 1. We further kept the dependence the dimensional

10

• determined in [Nefedov, 1902.11030] 

• rapidity divergences regulated through tilting light-cone directions of eikonal propagators  
 with  parametrizing the singularities 

• collinear, UV and soft singularity regulated through dimensional regularization in  
dimensions

n± → n± + e−ρn∓ ρ → ∞
d = 4 + 2ϵ

high energy divergence & log in energy: 
proportional to 1-loop gluon trajectory

https://arxiv.org/abs/1902.11030
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regularization parameter ✏ explicit:

HggH(z,p,k) =
2

z(1� z)

⇢
2z2 +

(1� z)zM2

H(k · r)[z2 + (1� z) · 2✏]� 2z3(p · r)(p · k)

r2(p2 + (1� z)M2

H)

+
(1 + ✏)(1� z)2z2M4

H

2

✓
1

�2 + (1� z)M2

H

+
1

p2 + (1� z)M2

H

◆2

�
2z2(p ·�)2 + 2✏ · (1� z)2z2M4

H

(p2 + (1� z)M2

H)(�2 + (1� z)M2

H)
�

2z(1� z)2M2

H

�2 + (1� z)M2

H

�
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H)

�

+
2k2

r2

⇢
z

1� z
+ z(1� z) + 2(1 + ✏)

(1� z)

z

(k · r)2

k2r2

�
; (46)

r = k � p denotes the transverse momentum of the real final state parton and

� = zr � (1� z)p. (47)

For the case of an initial quark we obtain instead

d
3
h
(0)

qg⇤!Hq(z,k)

dxHd2p
=

↵sCF�0

2⇡✏k2
HqqH(z,p,k), (48)

with

HqqH(z,p,k) =
1 + ✏

z


z
2 + 4(1� z)

(k · r)2

k2r2

�
. (49)

Both Eq. (46) and Eq. (49) were evaluated directly using Lipatov’s high energy e↵ective
action as well as using the conventional kT factorization procedure, where the sum over po-
larization of the incoming o↵-shell gluon is given by eikonal projectors. We furthermore
cross-checked the result numerically using KaTie [32].

Note that the quark channel is free of high energy divergences and we therefore took
already the limit ⇢ ! 1. To address the high energy divergence at z = 1 of the gluonic real
corrections, we note at first that

lim
z!1

↵sCA�0

2⇡✏

HggH(z,p,k)

k2
=

↵sCA�0

⇡✏ · r2
1

1� z
+ finite , (50)

where ‘finite’ indicates all the terms which do not require a regulator. Making use of the
following identity, where f(z) is a generic test function,

lim
⇢!1

Z
1

xH

dz
f(z)✓(⌘g + ⇢/2)

1� z
=

Z
1

xH

dz
f(z)

(1� z)+
+ f(1)


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xHp
+

A
p

r2
+

⇢

2

�
, (51)

with
Z

1

xH

dz
f(z)

(1� z)+
=

Z
1

xH

dz
f(z)� f(1)

1� z
�

Z xH

0

dz
f(1)

1� z
, (52)
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using 3 different methods 
• high energy effective action 
•kT-factorization (in light-cone gauge) 
•KaTie Monte Carlo 
•cross-checked against collinear results 
for  (off-shell gluon TM) 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� = zr � (1� z)p. (47)

For the case of an initial quark we obtain instead

d
3
h
(0)

qg⇤!Hq(z,k)

dxHd2p
=

↵sCF�0

2⇡✏k2
HqqH(z,p,k), (48)

with

HqqH(z,p,k) =
1 + ✏

z


z
2 + 4(1� z)

(k · r)2

k2r2

�
. (49)

Both Eq. (46) and Eq. (49) were evaluated directly using Lipatov’s high energy e↵ective
action as well as using the conventional kT factorization procedure, where the sum over po-
larization of the incoming o↵-shell gluon is given by eikonal projectors. We furthermore
cross-checked the result numerically using KaTie [32].

Note that the quark channel is free of high energy divergences and we therefore took
already the limit ⇢ ! 1. To address the high energy divergence at z = 1 of the gluonic real
corrections, we note at first that

lim
z!1

↵sCA�0

2⇡✏

HggH(z,p,k)

k2
=

↵sCA�0

⇡✏ · r2
1

1� z
+ finite , (50)

where ‘finite’ indicates all the terms which do not require a regulator. Making use of the
following identity, where f(z) is a generic test function,

lim
⇢!1

Z
1

xH

dz
f(z)✓(⌘g + ⇢/2)

1� z
=

Z
1

xH

dz
f(z)

(1� z)+
+ f(1)


ln

xHp
+

A
p

r2
+

⇢

2

�
, (51)

with
Z

1

xH

dz
f(z)

(1� z)+
=

Z
1

xH

dz
f(z)� f(1)

1� z
�

Z xH

0

dz
f(1)

1� z
, (52)
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Figure 2: Feynman diagrams for real correction in the gluon (left) and quark (right) channels re-

spectively. Here the wavy line indicates the o↵-shell reggeized gluon state. The gray vertex indicates

the gluon-gluon- reggeized gluon which is obtained as a combination of a first order induced vertex and

the three-gluon vertex, see second line. The quark channel includes both contributions due to quarks

and anti-quarks.

3.1 Virtual corrections

Virtual corrections to the operator �1

2
tr[Gµ⌫G

µ⌫ ] have been calculated in [65]. Adapting the
conventions of that paper to the ones used here we find:

dh
(1)

gg⇤!H(z,k)

d2pdxH
=

dh
(0)

gg⇤!H(z,k)

d2pdxH

↵s

2⇡
·

✓
k2

µ2

◆✏⇢
�

CA

✏2
�

1

✏

✓
8CA

3
�

2nf

3

◆

+
CA

✏


�⇢+ ln

k2

(p+a )2

�
+ CA


2Li2

✓
1 +

M
2

H

k2

◆
+

⇡
2

6
+

49

9

�
+ 11�

10

9
nf

�

(43)

where we also added the contribution due to the 1-loop corrections of the Higgs-gluon-gluon
coupling in the heavy quark limit, Eq. (37).

3.2 Real corrections

Real corrections obtain both contributions from the gluon and the quark channel. The
relevant Feynman diagrams are depicted in Fig. 2. Our convention for momenta is as follows

g(pa) + r+(k) ! H(p) + g(r), (44)

where we replace g $ q, q̄ for the contributions with initial and final (anti-) quark states. We
further use 0 < z < 1 to parametrize the initial parton momentum fraction, carried on by
the Higgs particle. For the gluon channel we find

d
3
h
(0)

gg⇤!Hg(z,k)

dxHd2p
=

↵sCA�0

2⇡✏k2
HggH(z,p,k)✓

⇣
⌘g +

⇢

2

⌘
(45)

where ⌘g = ln
(1�z)xHp+

A

z
p
r2

is the gluon rapidity and ⇢ the regulator for the high energy diver-

gence, which we take in the limit ⇢ ! 1. We further kept the dependence the dimensional

10

regulator on gluon rapidity  
general: unobserved final state particle

=



How to obtain a coefficient?
off-shell partonic result contains 
•high energy divergencies 
(parametrized by ) 

•collinear, soft and UV 
divergencies 

ρ → ∞

13

• UV as for collinear calculation

we identify the high energy singularity of the real corrections as

↵sCA�0

2⇡✏

HggH(z,p,k)

k2
= �(1� z)

⇢

2
�0 ·

↵sCA

⇡✏r2
+ . . . , (53)

while the z ! 1 singularity in HggH is now regulated through a plus-prescription and the
dots indicate terms finite in the limit ⇢ ! 1.

3.3 Counter-terms

Our result requires a number of counter-terms both to ultra-violet renormalization, collinear
factorization (initial parton) and high energy factorization (reggeized gluon field). For the
former two we will employ the MS-scheme, wile for the latter we will make use of the scheme
presented in Sec. 2.2. The ultra-violet counter-term is identical to the one used in the deter-
mination of collinear NLO corrections in [68] and can be entirely expressed through renor-
malization of the QCD strong coupling in the Higgs-gluon-gluon coupling constant gH . With

↵s = ↵s(µR)


1 +

↵s(µR)�0
(4⇡)

✓
1

✏
+ ln

µ
2

R

µ2

◆�
, �0 =

11CA

3
�

2nf

3
, (54)

where in the following we set µR = µ. The remaining singularities both in the limit ✏ ! 0
and ⇢ ! 1 can be factored into process independent functions associated with the external
legs (collinear parton and o↵-shell reggeized gluon state). With

d
3
hag⇤!Ha

dxHd2p
=

d
3
h
(0)

ag⇤!H

dxHd2p
+

d
3
h
(1)

ag⇤!H

dxHd2p
+

d
3
h
(0)

ag⇤!Ha

dxHd2p
, (55)

the physical coe�cient is then implicitly defined through the relation

d
3
h
(0)

ag⇤!Ha

dxHd2p
=

X

b=q,g

Z
1

xH

d⇠

Z
d
2+2✏k̃

d
3
Ĉbg⇤!Hb(z, k̃,p)

dxHd2p
�ba

✓
⇠,

µ
2

F

µ2

◆
�̃g⇤g⇤(⇠, k̃,k), (56)

where

�ba(z) = �ba�(1� z)�
↵s

2⇡

✓
1

✏
+ ln

µ
2

F

µ2

◆
Pga(z) +O(↵2

s), a = q, g (57)

are the 1-loop partonic parton distribution with gluon splitting functions,

Pgq(z) = CF
1 + (1� z)2

z
,

Pgg(z) = 2CA


z

(1� z)+
+

1� z

z
+ z(1� z)

�
+

�0

2
�(1� z), (58)

where corresponding quark splitting functions are absent since the leading order quark co-
e�cient vanishes. The 1-loop unintegrated gluon distribution is, following Sec. 2.2, given
by

�̃g⇤g⇤(⇠, k̃,k) = � (1� ⇠) �(2)(k � k̃)


1�

↵s

2⇡

✓
k2

µ2

◆✏✓5CA � 2nf

6✏
�

31CA � 10nf

18

◆

+ � (1� ⇠) (⇢+ 2⌘a)


↵sCA

2⇡✏(k̃ � k)2
� �

(2)(k � k̃)
↵s

2⇡✏

✓
k2

µ2

◆✏�
, (59)
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using that gH ∼ αs(μR)

• more interesting: 
external legs

we identify the high energy singularity of the real corrections as
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+ . . . , (53)

while the z ! 1 singularity in HggH is now regulated through a plus-prescription and the
dots indicate terms finite in the limit ⇢ ! 1.

3.3 Counter-terms

Our result requires a number of counter-terms both to ultra-violet renormalization, collinear
factorization (initial parton) and high energy factorization (reggeized gluon field). For the
former two we will employ the MS-scheme, wile for the latter we will make use of the scheme
presented in Sec. 2.2. The ultra-violet counter-term is identical to the one used in the deter-
mination of collinear NLO corrections in [68] and can be entirely expressed through renor-
malization of the QCD strong coupling in the Higgs-gluon-gluon coupling constant gH . With

↵s = ↵s(µR)
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✏
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µ
2

R

µ2
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11CA

3
�

2nf

3
, (54)

where in the following we set µR = µ. The remaining singularities both in the limit ✏ ! 0
and ⇢ ! 1 can be factored into process independent functions associated with the external
legs (collinear parton and o↵-shell reggeized gluon state). With

d
3
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=

d
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(0)
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+
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(1)
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+
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, (55)

the physical coe�cient is then implicitly defined through the relation
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1
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where
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2⇡

✓
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+ ln

µ
2

F

µ2
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Pga(z) +O(↵2

s), a = q, g (57)

are the 1-loop partonic parton distribution with gluon splitting functions,

Pgq(z) = CF
1 + (1� z)2

z
,

Pgg(z) = 2CA
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z

(1� z)+
+

1� z

z
+ z(1� z)

�
+
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2
�(1� z), (58)

where corresponding quark splitting functions are absent since the leading order quark co-
e�cient vanishes. The 1-loop unintegrated gluon distribution is, following Sec. 2.2, given
by

�̃g⇤g⇤(⇠, k̃,k) = � (1� ⇠) �(2)(k � k̃)


1�

↵s

2⇡

✓
k2

µ2

◆✏✓5CA � 2nf

6✏
�

31CA � 10nf
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◆

+ � (1� ⇠) (⇢+ 2⌘a)


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� �

(2)(k � k̃)
↵s

2⇡✏

✓
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◆✏�
, (59)
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1 loop partonic parton distribution

we identify the high energy singularity of the real corrections as

↵sCA�0

2⇡✏

HggH(z,p,k)

k2
= �(1� z)

⇢

2
�0 ·

↵sCA

⇡✏r2
+ . . . , (53)

while the z ! 1 singularity in HggH is now regulated through a plus-prescription and the
dots indicate terms finite in the limit ⇢ ! 1.

3.3 Counter-terms

Our result requires a number of counter-terms both to ultra-violet renormalization, collinear
factorization (initial parton) and high energy factorization (reggeized gluon field). For the
former two we will employ the MS-scheme, wile for the latter we will make use of the scheme
presented in Sec. 2.2. The ultra-violet counter-term is identical to the one used in the deter-
mination of collinear NLO corrections in [68] and can be entirely expressed through renor-
malization of the QCD strong coupling in the Higgs-gluon-gluon coupling constant gH . With

↵s = ↵s(µR)


1 +

↵s(µR)�0
(4⇡)
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1

✏
+ ln

µ
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◆�
, �0 =
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3
�
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3
, (54)

where in the following we set µR = µ. The remaining singularities both in the limit ✏ ! 0
and ⇢ ! 1 can be factored into process independent functions associated with the external
legs (collinear parton and o↵-shell reggeized gluon state). With

d
3
hag⇤!Ha

dxHd2p
=

d
3
h
(0)

ag⇤!H

dxHd2p
+

d
3
h
(1)

ag⇤!H

dxHd2p
+

d
3
h
(0)

ag⇤!Ha

dxHd2p
, (55)

the physical coe�cient is then implicitly defined through the relation

d
3
h
(0)

ag⇤!Ha

dxHd2p
=

X

b=q,g

Z
1

xH

d⇠

Z
d
2+2✏k̃

d
3
Ĉbg⇤!Hb(z, k̃,p)

dxHd2p
�ba

✓
⇠,

µ
2

F

µ2

◆
�̃g⇤g⇤(⇠, k̃,k), (56)

where

�ba(z) = �ba�(1� z)�
↵s

2⇡

✓
1

✏
+ ln

µ
2

F

µ2

◆
Pga(z) +O(↵2

s), a = q, g (57)

are the 1-loop partonic parton distribution with gluon splitting functions,

Pgq(z) = CF
1 + (1� z)2

z
,

Pgg(z) = 2CA


z

(1� z)+
+

1� z

z
+ z(1� z)

�
+

�0

2
�(1� z), (58)

where corresponding quark splitting functions are absent since the leading order quark co-
e�cient vanishes. The 1-loop unintegrated gluon distribution is, following Sec. 2.2, given
by

�̃g⇤g⇤(⇠, k̃,k) = � (1� ⇠) �(2)(k � k̃)


1�

↵s

2⇡
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k2

µ2

◆✏✓5CA � 2nf

6✏
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31CA � 10nf
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, (59)
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coll. gluon/quark

1-loop unintegrated gluon distribution

we identify the high energy singularity of the real corrections as

↵sCA�0

2⇡✏

HggH(z,p,k)

k2
= �(1� z)

⇢

2
�0 ·

↵sCA

⇡✏r2
+ . . . , (53)

while the z ! 1 singularity in HggH is now regulated through a plus-prescription and the
dots indicate terms finite in the limit ⇢ ! 1.

3.3 Counter-terms

Our result requires a number of counter-terms both to ultra-violet renormalization, collinear
factorization (initial parton) and high energy factorization (reggeized gluon field). For the
former two we will employ the MS-scheme, wile for the latter we will make use of the scheme
presented in Sec. 2.2. The ultra-violet counter-term is identical to the one used in the deter-
mination of collinear NLO corrections in [68] and can be entirely expressed through renor-
malization of the QCD strong coupling in the Higgs-gluon-gluon coupling constant gH . With

↵s = ↵s(µR)
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✓
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3
�
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3
, (54)

where in the following we set µR = µ. The remaining singularities both in the limit ✏ ! 0
and ⇢ ! 1 can be factored into process independent functions associated with the external
legs (collinear parton and o↵-shell reggeized gluon state). With
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, (55)

the physical coe�cient is then implicitly defined through the relation
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are the 1-loop partonic parton distribution with gluon splitting functions,

Pgq(z) = CF
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�
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2
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where corresponding quark splitting functions are absent since the leading order quark co-
e�cient vanishes. The 1-loop unintegrated gluon distribution is, following Sec. 2.2, given
by
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Origin of the  1-loop unintegrated gluon distribution: 
subtraction & cancellation of rapidity divergencies

14

fwd Higgs + 
gluon (quasi-
elastic): our 
result

central gluon 
production (high energy 
factorized)→the BFKL 
kernel!

both: + virtual corrections

both diagrams have an overlap region → need to 
remove this overlap [MH, Sabio Vera; 1110.6741]

= −

•no overlap any more 
•finite for  
•correct

ρ → ∞

https://arxiv.org/abs/1110.6741
https://arxiv.org/abs/1110.6741
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Transition function
next step: introduce 
transition function  to 
make cancellation of 
divergencies between 
individual contributions 
explicit

Z±

Ignoring terms beyond NLO accuracy and combining NLO corrections in the fragmentation
region of both partons as well as at the central rapidities, the partonic cross section can be
compactly written as1

d�
NLO

ab = [Ca,B(⇢)⌦GB(⇢)⌦ Cb,B(⇢)] . (22)

As a next step we define a renormalized Green’s function GR through

GB(k1,k2; ⇢) =
h
Z

+

⇣
⇢

2
� ⌘a

⌘
⌦GR (⌘a, ⌘b)⌦ Z

�
⇣
⇢

2
+ ⌘b

⌘i
(k1,k2), (23)

where the transition functions Z± possess the following perturbative expansion

Z
±(⇢̂;k, q) = �

(2+2✏)(k � q) + ⇢̂KBFKL(k, q) + f
±(k, q) + . . . , (24)

and are to all orders defined through the following BFKL equation,

d

d⇢̂
Z

+(⇢̂;k, q) =
⇥
Z

+(⇢̂)⌦KBFKL

⇤
(k, q),

d

d⇢̂
Z

�(⇢̂;k, q) =
⇥
KBFKL ⌦ Z

�(⇢̂)
⇤
(k, q), (25)

where

KBFKL(k, q) = K
(1)(k, q) +K

(2)(k, q) + . . . (26)

denotes the still undetermined BFKL kernel; f±(k, q) parametrizes finite contributions and
is in principle arbitrary. Symmetry of scattering amplitudes suggests f

+(k, q) = f
�(k, q),

while Regge theory suggests to fix it in such a way that terms which are not enhanced by the
parameter ⌘ are entirely transferred from the renormalized Green’s function to the impact
factors. Note that the factorization parameter ⌘ plays a rôle analogous to the factorization
scale in i.e. collinear factorization and parametrizes the scale ambiguity associated with high
energy factorization. Fixing the lowest order terms of GR through

GR(⌘a, ⌘b;k1,k2) = �
(2+2✏)(k1 + k2) +G

(1)

R (⌘a, ⌘b;k1,k2) + . . . , (27)

and expanding the right-hand side up to linear terms, we obtain

K
(1)(k1,k2) = V (�k1,k2) + �

(2+2✏)(k1 � k2)!
(1)(k1),

!
(1)

✓
✏,
k2

µ2

◆
= �

↵sCA

✏

✓
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µ2

◆✏

+O(✏),
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±,(1) (k1,k2) = �

(2+2✏)(k1 � k2)
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
�
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✏

✓
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3
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2nf
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◆
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31CA

9
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9

�
+O(✏). (28)

As a consequence

G
(1)

R (⌘a, ⌘b;k1,k2) = (⌘a � ⌘b)K
(1)(k1,k2). (29)

1Note that the impact factors themselves might depend on additional transverse momenta; this is however
irrelevant for the following discussion of high energy factorization and we therefore suppress this dependence
in the following.
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As a consequence
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R (⌘a, ⌘b;k1,k2) = (⌘a � ⌘b)K
(1)(k1,k2). (29)

1Note that the impact factors themselves might depend on additional transverse momenta; this is however
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⇢

2
+ ⌘b

⌘i
(k1,k2), (23)

where the transition functions Z± possess the following perturbative expansion
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transition function subject to BFKL 
kernel → possibility to define it 
within effective action

Using Eq. (25), it is then straightforward to show that

d

d⌘a
GR(⌘a, ⌘b;k1,k2) =

h
K

(1)(k1,k2)⌦GR(⌘a, ⌘b)
i
(k1,k2)

d

d⌘b
GR(⌘a, ⌘b;k1,k2) =

h
GR(⌘a, ⌘b)⌦K

(1)(k1,k2)
i
(k1,k2). (30)

Note that through imposing,

GR(⌘b, ⌘b;k1,k2) = �
(2+2✏)(k1 + k2), and ⌘a > ⌘b, (31)

no over-counting occurs. With all factors fixed, we insert now Eq. (23) into the NLO cross
section Eq. (22), which then immediately leads to

d�
NLO

ab = [Ca,R(⌘a)⌦GR(⌘a, ⌘b)⌦ Cb,R(⌘b)] , (32)

where

Ca,R(⌘a;k1) ⌘
h
Ca(⇢)⌦ Z

+

⇣
⇢

2
� ⌘a

⌘i
(k1),

Cb,R(⌘b;k2) ⌘
h
Z

+

⇣
⇢

2
+ ⌘b

⌘
⌦ Cb(⇢)

i
(k2) . (33)

In the following paragraph we will provide an explicit verification of this procedure, through
applying it to the forward Higgs impact factor. For simplicity we note that the finite coe�-
cient is at NLO given by the following general expression,

C
NLO

R (k) = h
(0)

a (k) + h
(1)

a (k) + h
(0)

a ⌦

h
(�

⇢

2
� ⌘a)K

(1)
� f

�,(1)
i
(k)

= h
(0)

a (k) + h
(1)

a (k, ⇢)�
↵sNc(

⇢
2
+ ⌘a)

⇡

Z
d
2+2✏r

r2
h
(0)

a

�
(r + k)2

��

+ h
(0)

a (k)
↵s

2⇡

✓
k2

µ2

◆✏ 
CA(⇢+ 2⌘a)

✏
+

1

✏

✓
5CA

6
�

2nf

6

◆
�

31CA

18
+

10nf

18

�
. (34)

3 The impact factor for forward Higgs production

We consider collisions of two hadrons A and B with momenta pA,B = p
±
A,Bn

⌥
/2 and squared

center of mass energy s = p
+

Ap
�
B with inclusive production of an on-shell Higgs boson in the

fragmentation region of hadron A. The four momentum of the Higgs boson p and its rapidity
⌘H are parametrized as

p = xHpA +
M

2

H + p2

xHs
pB + pT , ⌘H = ln

xHp
+

Ap
p2

, (35)

where pT is the embedding of the Euclidean Higgs transverse momentum p into Minkowski
space. To describe the coupling of the Higgs boson to the gluonic field, we make use of the
heavy top limit and employ the following e↵ective Lagrangian [66,67],

Le↵ = �
1

4
gHHF

a
µ⌫F

µ⌫
a (36)
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renormalized reggeized gluon 
Green's function

renormalized subtracted coefficient 

Note: reggeized gluon self energy 
contains also finite terms 
→ those terms are moved to impact 
factors 
→ universal, but  independent termsρ

1 loop

: factorization parameter 
→ BFKL equation for  as RG equation
ηa,b

GR



Real-virtual cancellations: 
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which contains apart from the 1-loop BFKL kernel in the second line, also terms due to
the gluon self-energy. In the current setup we preferred to formulate this distribution in
d = 4 + 2✏, while it is in principle straightforward to remove the remaining UV divergence
through an appropriate counter term associated with the gluon self-energy.

3.4 Subtraction mechanism to achieve numerical stability

Given the above counter terms, it is a relatively straightforward task to verify finiteness
of the resulting coe�cient in the limit ⇢ ! 1 and ✏ ! 0. While the subtraction of high
energy and ultraviolet singularities is straightforward, extracting of infrared singularities is
more cumbersome and requires the use of phase space slicing parameters, see [45–47] for
instance. While this is su�cient to demonstrate finiteness at a formal level, the use of
such phase space slicing parameters is in general complicated for numerical studies at NLO
accuracy. For the case of collinear NLO calculation, the by now conventional tool to overcome
this di�culty is provided by subtraction methods, in particular the dipole subtraction as
formulated in [72]. Within the current setup, collinear and soft singularities are directly
associated with the convolution integral over transverse momenta and the formulas of [72]
cannot be directly translated to the present case. In the following we therefore present a
subtraction mechanism which closely follows the spirit of [72], but which is adapted to the
current setup. In particular a generalization to other partonic high energy coe�cients appears
to be possible. Following [72], the basic idea is to subtract a certain auxiliary term from the
real corrections which a) renders the latter finite and b) can be easily integrated analytically.
We therefore propose the following decomposition:

Z
d
2+2✏r

⇡1+✏

(r)

r2
G((p+ r)2) =

Z
d
2r

⇡


(r)

r2

�

+

G(p+ r)2)

+

Z
d
2+2✏r

⇡1+✏

(r)

r2
p2

G(p2)

r2 + (p+ r)2
, (60)

with
Z

d
2r

⇡


(r)

r2

�

+

G((p+ r)2) ⌘

Z
d
2r

⇡

(r)

r2


G(p+ r)2)�

p2
G(p2)

r2 + (p+ r)2

�
. (61)

The expression in the squared brackets on the right-hand side vanish in the limit |r| ! 0, and
G(k) is a function which parametrizes the transverse momentum dependence of the reggeized
gluon state. The function (r) is such that the integral on the right hand side of Eq. (61) is
well-defined, which in practice means that it does not behave worse than ln |r| for |r| ! 0
and |r| ! 1. Furthermore, it should be such that the integral in the second line of Eq. (60)
can be calculated analytically. Note that the factor p2

/[r2 + (p + r)2] is needed to achieve
convergence in the ultraviolet. We have the following results for the choices (r) = 1, for
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Our final result still contains  poles 

and divergent convolution integrals

1
ϵ

,
1
ϵ2

can be shown relatively easily that those 
poles cancel (phase space slicing 
techniques)

numerics: something like dipole subtraction [Catani, Seymour; hep-ph/9605323] 
would be desirable ….. 
here: divergencies related to convolution integral → can’t directly 
apply those techniques

with H the scalar (Higgs) field and gH the e↵ective coupling [68,69]

gH = �
↵s

3⇡v

⇣
1 +

↵s

4⇡
11

⌘
+O(↵3

s) . (37)

Since the top quark has been integrated out, the strong coupling ↵s is evaluated for nf = 5
flavors and v

2 = 1/(
p
2GF ) with GF the Fermi constant. Working under the assumption

that multi-reggeized gluon exchanges can be neglected, the hadronic di↵erential cross section
is factorized into

d
3
�

d2pdxH
=

Z
1

xH

dz

z

X

a=q,g

fa

⇣
xH

z
, µ

2

F

⌘Z
d
2k

⇡

dĈag⇤!H(µ2

F , ⌘a; z,k)

d2pdxH
G(⌘a,k), (38)

where G(⌘a,k) denotes the unintegrated gluon distribution of hadron B which parametrizes
non-perturbative input of hadron B and is subject to BFKL evolution; ⌘a is a factorization
parameter associated with the highest gluon rapidity absorbed into the unintegrated gluon
density. In terms of the elements defined in the previous section we have

G(⌘a,k, Q0) =

Z
d
2qGR(⌘a,k, q)h

ugd(q, Q0), (39)

where h
ugd is obtained as the convolution of partonic impact factor and parton distribu-

tion functions. In particular, collinear singularities, which arise from the infra-red region of
transverse momentum integration are assumed to be absorbed into the parton distribution
function of hadron B following the general procedure outlined in [70], see also [18, 71]. The
dependence on the scale Q0 is understood to arise as a consequence of such a factorization
of collinearly enhanced contributions. For the partonic di↵erential coe�cient, we assume the
following perturbative expansion

d
3
Ĉ

NLO
ag⇤!H

dxHd2p
= �0

0

@d
3
Ĉ

(0)

ag⇤!H

dxHd2p
+

↵s

2⇡
·
d
3
Ĉ

(1)

pg⇤!H

dxHd2p
+ . . .

1

A . a = q, g, (40)

With

d
3
h
(0)

ag⇤!H

dxHd2p
= �0

Z
dk

�

k�
�
(2)(p� k)�(1� z)�

✓
1�

M
2

H + k2

p
+
a k

�

◆
, �0 =

g
2

H⇡

8(N2
c � 1)

, (41)

we have

dĈ
(0)

gg⇤!H(µ2

F , ⌘a; z,k)

d2pdxH
= �

(2)(p� k)�(1� z), (42)

at leading order, while the corresponding contribution from the quark-channel vanishes. In
the following we will determine the next-to-leading order corrections to this impact factor.
This will be the main result of this paper.
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instead propose:
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•in general: numerically for real corrections 
•finiteness checked for Mellin representation 

of G(q2) = ∫
dγ
2πi ( q2

Q2
0 )

γ

G̃(γ)

calculated analytically & 
added to virtual corrections 
→combined expression finite

https://arxiv.org/abs/hep-ph/9605323
https://arxiv.org/abs/hep-ph/9605323


• Derived coefficient for forward Higgs production within the  effective gluon-Higgs 
coupling

• Introduced transition function to cancel high energy divergencies

• Presented subtraction mechanism (→mimics dipole subtraction)  
achieves elegant cancelation of soft-collinear cancelation between real & virtual 
corrections

Outlook:

• Numerical studies + generalized TMD factorization along the lines of [MH, Kusina, Kutak, 
Serino, 1711.04587, 1607.01507]

• phenomenology (?)

mt → ∞
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Conclusions

https://arxiv.org/abs/1711.04587
https://arxiv.org/abs/1607.01507
https://arxiv.org/abs/1711.04587
https://arxiv.org/abs/1607.01507
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Thanks a lot for attention!
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