Impact factors: Current status and future

Mohammed Maher Abdelrahim Mohammed mohammed.maher@unical.it

Dipartimento di Fisica dell'Università della Calabria INFN - Gruppo collegato di Cosenza Italy

Resummation, Evolution, Factorization 2020

7-11 December

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI FISICA

Outline

3 The impact factors map

4 Case study: Higgs IF

5 Conclusions

Introduction

- igll hadronic scattering processes with a hard scale $Q^2 \gg \Lambda^2_{
 m QCD}$ described within pQCD
- Q in high-energy limit $s\gg Q^2$: $\Rightarrow lpha_s(Q)\ln s/Q^2\sim 1$ need to be resummed

BFKL resummation:

leading logarithmic approximation (LLA): $\alpha_s^n (\ln s)^n$ next-to-leading logarithmic approximation (NLA): $\alpha_s^{n+1} (\ln s)^n$

> [Ya.Ya. Balitsky, V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975)] [V.S. Fadin,L.N. Lipatov, D. Ciafaloni, G. Gamici (1998)]

BFKL factorization:

Green's function is process-independent

- \rightarrow determined through the BFKL equation
- Impact factors are process-dependent
 - → known in the NLA just for limited cases.

UNIVERSIT

▽ Partial inclusion of NLA effects: by using the two impact factors in the leading-order (LO), along with the NLA BFKL Green's function:

• Full NLA:

(mn-jets)[B. Ducloué, L. Szymanowski, S. Wallon (2014)] [F. Caporale, D.Yu. Ivanov, B. Murdaca, A. Papa (2014)] [F.G. Celiberto, D.Yu. Ivanov, B. Murdaca, A.Papa (2015)]

(di-hadron)[F.G. Celiberto, D.Yu. Ivanov, B. Murdaca, A.Papa (2016,2017)]

(hadron-jet)[A.D. Bolognino, F.G. Celiberto, D.Yu. Ivanov, M.M.A.M, A.Papa (2018)]

Partial NLA:

(four-jet)[F. Caporale, G. Chachamis, B. Murdaca, A. Sabio Vera (2016)]

[F. Caporale, F.G. Celiberto, G. Chachamis, A. Sabio Vera (2016)]

(multi-jet)[F. Caporale, F.G. Celiberto, G. Chachamis, D.G. Gomez, A. Sabio Vera (2016,2017)]

(J/ψ-jet production)[R. Boussarie, B. Ducloué, L. Szymanowski, S. Wallon (2018)]

(Drell-Yan pair -jet)[K. Golec-Biernat, L. Motyka, T. Stebel (2018)]

(photoproduction)[F.G. Celiberto, D.Yu. Ivanov, B. Murdaca, A. Papa,(2018)]

[A.D. Bolognino, F.G. Celiberto, M. Fucilla, D.Yu. Ivanov, B. Murdaca, A. Papa,(2019)]

(hadroproduction) [A.D. Bolognino, F.G. Celiberto, M. Fucilla, D.Yu. Ivanov, B. Murdaca, A. Papa, (2019).]

(Higgs-jet) [F.G Celiberto's talk]

why do we need NLO Impact factors:

NLO corrections generally found to be large \rightarrow need to calculate them

- **Q**. Reduce scale uncertainties due to (μ_R, μ_F, s_0) .
- Understand: the main physical effects of the radiative corrections in BFKL.
- Check the validation of the Reggeization beyond LLA.
- Match realistic cases (jet with more than one parton).
- Complete and open the door for more phenomenological studies beyond LLA.
- tools and methods:
 - Lipatov's high energy effective action.

[L.N. Lipatov,(1995)]

- Standard (Feynman diagrams), Reggezed gluone is an external gluon with the "nonsense" polarization.
- Operator product expansion "OPE" .

Impact factors: account for the coupling of the Pomeron to the hadrons.

Universal property: $\Phi(k,q)|_{k\to 0}^{k-q\to 0} \to 0$, $\xi \downarrow f$ which guarantees the infra-red finiteness of the BFKL amplitudes.

LLA

$$\Phi_{AA'}(\vec{q}) = \sum_{\{f\}} \int \frac{dM_{AR}}{2\pi} \Gamma^{(0)c}_{\{f\}A} [\Gamma^{(0)c'}_{\{f\}A'}]^* d\rho_f$$

[V.S. Fadin ,R. Fiore (1998)]

Section 2017 Phase space

particle-Reggeon squared invariant mass

Effective vertices

$$d\rho_{f} = (2\pi)^{D} \delta^{(D)} \left(P_{A} - q_{1} - \sum_{\{f\}} l_{f} \right) \prod_{\{f\}} \frac{d^{D-1} l_{f}}{2\epsilon_{f} (2\pi)^{D-1}}$$

UNIVERSITÀ ELLACALABRIA

Impact factors: account for the coupling of the Pomeron to the hadrons.

Universal property: $\Phi(k,q)|_{k\to 0}^{k-q\to 0} \to 0$, $\xi \downarrow f$ which guarantees the infra-red finiteness of the BFKL amplitudes.

LLA

$$\Phi_{AA'}(\vec{q}) = \sum_{\{f\}} \int \frac{dM_{AR}}{2\pi} \Gamma^{(0)c}_{\{f\}A} [\Gamma^{(0)c'}_{\{f\}A'}]^* d\rho_f$$

[V.S. Fadin ,R. Fiore (1998)]

- particle-Reggeon squared invariant mass
- Effective vertices

$$M_{AR} = (P_A - q_1)^2 = (P_{A'} - q_1')^2$$

UNIVERSITÀ DELLACALABRIA

Impact factors: account for the coupling of the Pomeron to the hadrons.

Universal property: $\Phi(k,q)|_{k\to 0}^{k-q\to 0} \to 0$, $\xi \downarrow f$ which guarantees the infra-red finiteness of the BFKL amplitudes.

LLA

$$\Phi_{AA'}(\vec{q}) = \sum_{\{f\}} \int \frac{dM_{AR}}{2\pi} \Gamma^{(0)c}_{\{f\}A} [\Gamma^{(0)c'}_{\{f\}A'}]^* d\rho_f$$

[V.S. Fadin ,R. Fiore (1998)]

Evaluated in the LLA or Born approximation

Impact factors: account for the coupling of the Pomeron to the hadrons.

Universal property: $\Phi(k,q)|_{k\to 0}^{k-q\to 0} \to 0$, $\xi \downarrow f$ which guarantees the infra-red finiteness of the BFKL amplitudes.

LLA

$$\Phi_{AA'}(\vec{q}) = \sum_{\{f\}} \int \frac{dM_{AR}}{2\pi} \Gamma^{(0)c}_{\{f\}A} [\Gamma^{(0)c'}_{\{f\}A'}]^* d\rho_f$$

[V.S. Fadin ,R. Fiore (1998)]

UNIVERSIT

particle-Reggeon squared invariant mass

Effective vertices

Remark: In the LLA impact factors do not depend on s0

- Higher order corrections to $\Gamma_{AA'} \rightarrow \Gamma^{(0)}_{AA'} + \Gamma^{(1)}_{AA'}$
- Extra gluons:

NLA

- fragmentation region
- central region

 $\Phi_{AA'}(\vec{q}, s_0) = \sum_{\{f\}} \int \frac{dM_{AR} d\rho_f}{2\pi} \Gamma^c_{\{f\}A} [\Gamma^{c'}_{\{f\}A'}]^* \theta(M_\Lambda - M_{AR})$ $-\frac{1}{2} \int \frac{d^{D-2}q'}{\vec{q'}^2 (\vec{q'} - \vec{q})^2} \Phi^{(B)}_{A'A}(\vec{q'}, \vec{q}) \mathcal{K}^{(B)}_r(\vec{q'}, \vec{q}_R) \ln\left(\frac{s_\Lambda^2}{(\vec{q'} - \vec{q}_R)s_0}\right)$

[V.S. Fadin ,R. Fior (1998)]

s₀-dependence of the BFKL amplitude is canceled.
 NLO impact factors for colorless particles are IR finite

Two more remarks:

Impact factors

7 / 18

- Higher order corrections to $\Gamma_{AA'} \rightarrow \Gamma^{(0)}_{AA'} + \Gamma^{(1)}_{AA'}$
- Extra gluons:

NLA

- fragmentation region
- central region

$\Phi_{AA'}(\vec{q}, s_0) = \sum_{\{f\}} \int \frac{dM_{AR} d\rho_f}{2\pi} \Gamma^c_{\{f\}A} [\Gamma^{c'}_{\{f\}A'}]^* \theta(M_\Lambda - M_{AR})$ $-\frac{1}{2} \int \frac{d^{D-2}q'}{\vec{q'}^2 (\vec{q'} - \vec{q})^2} \Phi^{(B)}_{A'A}(\vec{q'}, \vec{q}) \mathcal{K}^{(B)}_r(\vec{q'}, \vec{q}_R) \ln\left(\frac{s_\Lambda^2}{(\vec{q'} - \vec{q}_R)s_0}\right)$

Solution (V.S. Fadin , R. Fior (1998))
 ✓ s₀-dependence of the BFKL amplitude is canceled.
 ✓ NLO impact factors for colorless particles are IR finite.

Impact factors

7/18

- Extra gluons:
 - fragmentation region
 - central region

NLA

$$\Phi_{AA'}(\vec{q}, s_0) = \sum_{\{f\}} \int \frac{dM_{AR} d\rho_f}{2\pi} \Gamma^c_{\{f\}A} [\Gamma^{c'}_{\{f\}A'}]^* \theta(M_\Lambda - M_{AR}) - \frac{1}{2} \int \frac{d^{D-2}q'}{\vec{q'}^2 (\vec{q'} - \vec{q})^2} \Phi^{(B)}_{A'A}(\vec{q'}, \vec{q}) \mathcal{K}^{(B)}_r(\vec{q'}, \vec{q}_R) \ln\left(\frac{s_\Lambda^2}{(\vec{q'} - \vec{q}_R)s_0}\right) - \frac{1}{2} \int \frac{d^{D-2}q'}{\vec{q'}^2 (\vec{q'} - \vec{q})^2} \Phi^{(B)}_{A'A}(\vec{q'}, \vec{q}) \mathcal{K}^{(B)}_r(\vec{q'}, \vec{q}_R) \ln\left(\frac{s_\Lambda^2}{(\vec{q'} - \vec{q}_R)s_0}\right)$$

Two more remarks: [V.S. Fadin ,R. Fior (1998)]

- \checkmark s_0 -dependence of the BFKL amplitude is canceled.
- $\checkmark\,$ NLO impact factors for colorless particles are IR finite.

Impact factors

7 / 18

UNIVERSITÀ DELLA CALABRIA

Impact factors map

Review of Higgs IF calculation

- Leading-order
 - Calculating $\mathcal{M}(gg^* \to H)....$
 - Use QCD collinear factorization

 $f_g \otimes [\text{Higgs vertex}]$

•
$$\int P.S^{(1)} \to 2\pi\delta(s_{gR} - M_H^2)$$

• Simple result projected into $(\nu, n = 0)$ -space.

$$\frac{dV_{gg \to H}^{(0)}(\nu, n=0)}{dx_1 d^2 \overrightarrow{P_H}} = \frac{\alpha_s^2}{\nu^2} \frac{|\mathcal{F}(|q_{\perp}^2|)|^2}{128\pi^3 \sqrt{2(N_c^2-1)}} (\overrightarrow{P_H}^2)^{i\nu-1/2} f_g(x_1).$$

• NLO: part of virtual real const $\sqrt{\frac{1}{\epsilon}P_{gq}}$ finite PDF Imp.Fact.

NL contribution

(a) large top quark mass limit $:m_t \to \infty$

• features of HEFT

$$\mathcal{L}_{eff} = -\frac{A}{4}hG^a_{\mu\nu}G^{\mu\nu}_a, \quad A = \frac{\alpha_s}{3\pi v}\left(1 + \frac{11}{4}\frac{\alpha_s}{\pi}\right)$$

- Reduces calculations by one loop order.
- Turns a two-scale problem into two one-scale problems
- ▶ NLA recipe...
- * Pick a regularization scheme (dimensional regularization for us)
- \star Get the tree-level result.
- \star Calculate 1-loop diagrams as a series in ϵ
- * Perform the ultraviolet renormalization.
- \star Calculate the real emission diagrams, extract singularities that appear in soft/collinear regions of phase space.
- * Absorb initial-state collinear singularities into PDFs
- * Get a finite result

UNIVERSIT

Virtual correction

In on-zero contributions to $gg^* \to H$ at one-loop in the HEFT

• Born in $(d = 4 - 2\epsilon)$ dimensions:

$$|\mathcal{M}^{(B)}|^2 = \frac{\alpha_s^2}{72\pi^2} \frac{|q_{\perp}^2|}{v^2} \frac{1}{(1-\epsilon)}$$

tensor integrals appearing in the amplitudes so to express the results in terms

• triangle diagram

$$\mu^{2\epsilon} \int \frac{d^d z}{(2\pi)^d} \frac{1}{(k-z)^2 z^2 (q+z)^2} = \frac{-i}{(4\pi)^2} \frac{G(\epsilon)}{\epsilon^2} \frac{\left(\mu^2/q_{\perp}^2\right)^{\epsilon}}{2k \cdot q} \left[1 + \left(\frac{M_{H}^2}{q_{\perp}^2}\right)^{-\epsilon} \right],$$

• bubble diagram

$$\mu^{2\epsilon} \int \frac{d^d z}{(2\pi)^d} \frac{1}{z^2 (P_H + z)^2} = \frac{i}{16\pi^2} \frac{G(\epsilon)}{\epsilon} \frac{\left(-\mu^2 / P_H^2\right)^{\epsilon}}{(1 - 2\epsilon)}$$

$$G(\epsilon) = (4\pi)^{\epsilon} \frac{\Gamma(1+\epsilon)\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)}$$

 \blacksquare Taking into our account the QCD charge renormalization, LO dependence on α_S gives the counterterm

$$V_{g \to H}^{(0)}(\vec{q}^{\,2}) \to V_{g \to H}^{(0)}(\vec{q}^{\,2}) \left[1 - \frac{\alpha_s}{2\pi} G(\epsilon) \left(\frac{\mu^2}{\mu_R^2}\right)^{\epsilon} \frac{2\beta_0}{\epsilon} \right],$$

. Using the NLO IF definition and $\omega(-ec q^{\,2})$ in the 1-loop approximation

$$\omega(-\vec{q}^{\,2}) = \frac{g^2 C_A}{2} \mu^{2\epsilon} \int \frac{d^{d-2}k}{(2\pi)^{d-1}} \frac{(-\vec{q}^{\,2})}{\vec{k}^{\,2}(\vec{q}-\vec{k})^2} = -\frac{\alpha_s}{2\pi} G(\epsilon) \frac{C_A}{2} \left(\frac{\mu^2}{q_\perp^2}\right)^{\epsilon}$$

result

$$\begin{split} V_{g \to H}^{(1)virt}(\vec{q}\,^2, s_0) &= V_{g \to H}^{(0)}(\vec{q}\,^2) \left(\frac{\alpha_s}{2\pi}\right) G(\epsilon) \left(\frac{\mu^2}{q_\perp^2}\right)^{\epsilon} \left\{\frac{-2C_A}{\epsilon^2} + \frac{C_A}{\epsilon} \left(\ln\frac{M_H^2}{q_\perp^2} - \ln\frac{s_0}{q^2} - 2\beta_0\right) \right. \\ &+ C_A \left(\frac{2\beta_0}{C_A} \ln\frac{q_\perp^2}{\mu_R^2} - \frac{5}{3}\right) + \ldots \right\} \end{split}$$

apart from the notation, this coincides with what has been computed two years ago

[Bo-Wen; Yuan, Feng (2018), Physics Letters B, 782(), 28-33.]

UNIVERSITÀ DELLA CALABRIA

Real correction

. imply the calculation of $2 \rightarrow 2$ tree-level amplitudes and integration over part of the phase space in *d*-dimensions

$$PS = \frac{1}{8\pi} \left(\frac{4\pi}{M_H^2}\right)^{\epsilon} \frac{(1-z)^{1-2\epsilon}}{\Gamma(1-\epsilon)} \int_0^1 \omega^{-\epsilon} (1-\omega)^{-\epsilon} d\omega, \quad z = \frac{M_H^2}{s}, \quad \omega = \frac{1+\cos(\theta)}{2}$$

When we combine matrix elements and phase space, get terms of the following form:

$$(1-z)^{1-2\epsilon}(1-\omega)^{-\epsilon}$$

The integrals over ω can be done in terms of Γ(ε), while the soft singularities as can be extracted using []₊:

$$(1-z)^{1-2\epsilon} = \left[\frac{1}{1-z}\right]_+ - 2\epsilon \left[\frac{\ln(1-z)}{1-z}\right]_+ - \frac{1}{2\epsilon}\delta(1-z)$$

up to he following contribution to IF

$$\simeq \left\{ \frac{6}{\epsilon^2} \delta(1-z) + \frac{18z(z^2-z+2)}{\epsilon} + 12 \left[\frac{\ln(1-z)}{1-z} \right]_+ + \dots \right\}$$

I remaining initial-state collinear singularities \rightarrow PDFs.

Conclusions

BFKL NLL corrections are large and must be taken into account.

- For the colorless particles the IR safety of the impact factors is guaranteed by their definition within the spirit of BFKL factorization
- It is important to have an indepentent calculation of NL IF for forward Higgs.

Conclusions

- BFKL NLL corrections are large and must be taken into account.
- For the colorless particles the IR safety of the impact factors is guaranteed by their definition within the spirit of BFKL factorization
- It is important to have an indepentent calculation of NL IF for forward Higgs.

Conclusions

- BFKL NLL corrections are large and must be taken into account.
- For the colorless particles the IR safety of the impact factors is guaranteed by their definition within the spirit of BFKL factorization
- It is important to have an indepentent calculation of NL IF for forward Higgs.

UNIVERSIT?

BACKUP slides

• one-loop correction $\Gamma^c_{q\bar{q}}$.

- b real corrections: $\gamma^* + q
 ightarrow (q \bar{q} g) + q$.
- Combining real and virtual corrections.
- possibility for simplification.
- 1st numerical results for the real corrections γ_L^* .
- Wilson lines:

- 1st numerical results for the real corrections γ_L^* .
- Wilson lines:

- one-loop correction $\Gamma^c_{q\bar{q}}$.
- real corrections: $\gamma^* + q o (q ar q g) + q.$
- Combining real and virtual corrections.
- possibility for simplification.
- 1st numerical results for the real corrections γ_L^* .
- Wilson lines:

- one-loop correction $\Gamma^c_{q\bar{q}}$.
- \bigcirc real corrections: $\gamma^* + q o (q ar q g) + q.$
- Combining real and virtual corrections.
- possibility for simplification.
- 1st numerical results for the real corrections γ_L^* .

Wilson lines:

Impact factors for colliding parton

- * LLA \rightarrow leading-order (LO) impact factor \rightarrow one-particle intermediate state.
- * NLA \rightarrow next-to-LO (NLO) impact factor: <u>virtual corrections</u> \rightarrow one-particle intermediate state real particle production \rightarrow two-particle intermediate state
- ✓ Check the so-called "bootstrap" conditions.
 ✓ Expected infrared divergences observed.

Impact factors for colliding parton

- \star LLA \rightarrow leading-order (LO) impact factor \rightarrow one-particle intermediate state.
- * NLA → next-to-LO (NLO) impact factor: <u>virtual corrections</u> → one-particle intermediate state real particle production → two-particle intermediate state
- ✓ Check the so-called "bootstrap" conditions.✓ Expected infrared divergences observed.

Impact factors for colliding parton

- \star LLA \rightarrow leading-order (LO) impact factor \rightarrow one-particle intermediate state.
- * NLA \rightarrow next-to-LO (NLO) impact factor: <u>virtual corrections</u> \rightarrow one-particle intermediate state real particle production \rightarrow two-particle intermediate state
- ✓ Check the so-called "bootstrap" conditions.✓ Expected infrared divergences observed.

Impact factors for colliding parton

[V.S. Fadin, R. Fiore, M.I. Kotsky, A. Papa (2000)] [M. Ciafaloni and G. Rodrigo (2000)]

- \star LLA \rightarrow leading-order (LO) impact factor \rightarrow one-particle intermediate state.
- * NLA \rightarrow next-to-LO (NLO) impact factor: <u>virtual corrections</u> \rightarrow one-particle intermediate state real particle production \rightarrow two-particle intermediate state
- $\checkmark\,$ Check the so-called "bootstrap" conditions.

✓ Expected infrared divergences observed.

Impact factors for colliding parton

- \star LLA \rightarrow leading-order (LO) impact factor \rightarrow one-particle intermediate state.
- * NLA \rightarrow next-to-LO (NLO) impact factor: <u>virtual corrections</u> \rightarrow one-particle intermediate state real particle production \rightarrow two-particle intermediate state
- ✓ Check the so-called "bootstrap" conditions.
- \checkmark Expected infrared divergences observed.

To allow one parton to produce jet (or hadron), open one of the integrations over the phase space of the intermediate state.

use QCD collinear factorization

 $\sum_{a=q,\tilde{q}} f_a \otimes (quark \ jet \ vertex) + f_g \otimes (gluon \ jet \ vertex).$

[J. Bartels, D. Colferai, G.P. Vacca (2003) [F. Caporale, D.Yu. Ivanov, B. Murdaca, A.Papa, A. Perri (2011) [D.Yu. Ivanov, A.Papa. (2012)](small-cone approximation [D.Yu. Ivanov, A.Papa. (2012)]

 $\bullet \quad \sum_{a=q,\bar{g}} f_a \otimes (quark \ vertex) \otimes D_a^h + f_g \otimes (gluon \ vertex) \otimes D_g^h$

To allow one parton to produce jet (or hadron), open one of the integrations over the phase space of the intermediate state.

use QCD collinear factorization:

 $\sum f_a \otimes (quark \ jet \ vertex) + f_g \otimes (gluon \ jet \ vertex).$

 $a=q,\bar{q}$

[J. Bartels, D. Colferai, G.P. Vacca (2003)] [F. Caporale, D.Yu. Ivanov, B. Murdaca, A.Papa, A. Perri (2011)] [D.Yu. Ivanov, A.Papa. (2012)](small-cone approximation) [D.Yu. Ivanov, A.Papa. (2012)]

 $\ \, {\displaystyle \bigcirc} \ \, \sum_{a=q,\bar{q}} f_a \otimes (quark \ vertex) \otimes D^h_a + f_g \otimes (gluon \ vertex) \otimes D^h_g$

To allow one parton to produce jet (or hadron), open one of the integrations over the phase space of the intermediate state.

• use QCD collinear factorization: • $\sum_{a=q,\bar{q}} f_a \otimes (quark \ jet \ vertex) + f_g \otimes (gluon \ jet \ vertex).$

[J. Bartels, D. Colferai, G.P. Vacca (2003)] [F. Caporale, D.Yu. Ivanov, B. Murdaca, A.Papa, A. Perri (2011)] [D.Yu. Ivanov, A.Papa. (2012)](small-cone approximation) [D.Yu. Ivanov, A.Papa. (2012)]

To allow one parton to produce jet (or hadron), open one of the integrations over the phase space of the intermediate state.

• use QCD collinear factorization: • $\sum_{a=q,\bar{q}} f_a \otimes (quark \ jet \ vertex) + f_g \otimes (gluon \ jet \ vertex).$

[J. Bartels, D. Colferai, G.P. Vacca (2003)] [F. Caporale, D.Yu. Ivanov, B. Murdaca, A.Papa, A. Perri (2011)] [D.Yu. Ivanov, A.Papa. (2012)](small-cone approximation) [D.Yu. Ivanov, A.Papa. (2012)]

$$\sum_{a=q,\bar{q}} f_a \otimes (quark \ vertex) \otimes D_a^h + f_g \otimes (gluon \ vertex) \otimes D_g^h.$$

$$[D.Yu. \ lyanov, A.Papa. (2012)]$$

Collinear singularities absorbed in PDFs and FFs.

To allow one parton to produce jet (or hadron), open one of the integrations over the phase space of the intermediate state.

• use QCD collinear factorization: • $\sum_{a=q,\bar{q}} f_a \otimes (quark \ jet \ vertex) + f_g \otimes (gluon \ jet \ vertex).$

[J. Bartels, D. Colferai, G.P. Vacca (2003)] [F. Caporale, D.Yu. Ivanov, B. Murdaca, A.Papa, A. Perri (2011)] [D.Yu. Ivanov, A.Papa. (2012)](small-cone approximation) [D.Yu. Ivanov, A.Papa. (2012)]

$$\sum_{a=q,\bar{q}} f_a \otimes (quark \ vertex) \otimes D_a^h + f_g \otimes (gluon \ vertex) \otimes D_g^h.$$
[D.Yu. Ivanov, A.Papa. (2012)

$$\gamma^* \to VLM$$

$$\Phi_{1,2}(\vec{q}) = \alpha_s D_{1,2} \left[C_{1,2}^{(0)}(\vec{q}^2) + \bar{\alpha_s} C_{1,2}^{(1)}(\vec{q}^2) \right]$$
$$D_{1,2} = -\frac{4\pi e_q f_V}{N_c Q_{1,2}} \sqrt{N_c^2 - 1}$$

$$\begin{array}{c|c} \gamma_L(p) & zp_1 & \phi_{\parallel}(z) & \rho_L(p_1) \\ & & -\bar{z}p_1 \\ & & -\bar{z}p_1 \\ & & & & \\ q & & & q \end{array}$$

[D.Yu. Ivanov, M.I. Kotsky, A.P. (2004)]

• Leading order (photon virtuality Q^2): $C_{1,2}^{(0)}(\vec{q}^2) = \int_0^1 \frac{\vec{q}^2}{\vec{q}^2 + z\bar{z}Q^2} \phi_{||}(z,\mu_F) dz$

Next-to-leading order:

$$C_{1,2}^{(1)}(\vec{q}^2) = \frac{1}{4N_c} \int_0^1 \frac{\vec{q}^2}{\vec{q}^2 + z\bar{z}Q^2} \bigg[\tau(z) + \tau(1-z) \bigg] \phi_{||}(z,\mu_F) dz$$

UNIVERSITÀ ILLACALABRIA

Collinear factoraization reduces complexity.