# EXTRACTION OF SIVERS FUNCTIONS FROM SIDIS AND DRELL-YAN DATA WITH TMD EVOLUTION

Marcin Bury Regensburg University



Universität Regensburg

#### Resummation, Evolution, Factorization 2020 7-11 December 2020

Based on work in collaboration with Alexei Prokudin and Alexey Vladimirov

arXiv: 2012.05135

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

# Transverse Momentum Dependent distributions



Dudek et al. Eur. Phys. J. A 48 (2012)

Leading Twist TMDs

Nucleon Spin
Ouar

Quark Spin



Accardi et al. Eur. Phys. J. A 52 (2016)

# Transverse Momentum Dependent distributions



Dudek et al. Eur. Phys. J. A 48 (2012)

Leading Twist TMDs

Nucleon Spin

Quark Spin



Accardi et al. Eur. Phys. J. A 52 (2016)

# Transverse Momentum Dependent distributions

▲ X  $k_{\perp}$ 

Dudek et al. Eur. Phys. J. A 48 (2012)

$$f_{1T}^{\perp SIDIS} = -f_{1T}^{\perp DY}$$

Leading Twist TMDs

Nucleon Spin

Quark Spin



Accardi et al. Eur. Phys. J. A 52 (2016)

# Single Spin Asymmetries

#### SIDIS

Drell-Yan,  $W^{\pm}/Z$  production





$$\frac{d\sigma}{d\mathcal{PS}} = \sigma_0 \Big\{ F_{UU,T} + |S_{\perp}| \sin(\phi_h - \phi_S) F_{UT,T}^{\sin(\phi_h - \phi_S)} \Big\} \qquad \frac{d\sigma}{d\mathcal{PS}} = \sigma_0 \Big\{ F_{UU}^1 + |S_T| \sin(\varphi - \phi_S) F_{TU}^1 \Big\}$$

$$A_{UT}^{\sin(\phi_h - \phi_S)} \equiv \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UU,T}} = -M \frac{\mathcal{B}_1^{\text{SIDIS}} \left[ f_{1T}^{\perp} D_1 \right]}{\mathcal{B}_0^{\text{SIDIS}} [f_1 D_1]} \qquad A_{TU} \equiv \frac{F_{TU}^1}{F_{UU}^1} = -M \frac{\mathcal{B}_1^{\text{DY}} [f_{1T}^{\perp} f_2]}{\mathcal{B}_0^{\text{DY}} [f_1 f_2]}$$

 $10^{\rm th}$ 

# Unpolarized TMD



# Evolution

- TMD distributions depend on ultra-violet  $\mu$  and rapidity  $\zeta$  renormalization scales and the evolution is dictated by a pair of differential equations
- We use the  $\zeta$ -prescription (the reference scale  $(\mu, \zeta) = (\mu, \zeta_{\mu}(b))$  is selected from equipotential line of the field anomalous dimension that passes through the saddle point)
- The reference TMD distribution is independent on  $\mu$  and the solution of evol. equations can be written in simpler form

$$f_{1T,q\leftarrow h}^{\perp}(x,b;\mu,\zeta) = \left(\frac{\zeta}{\zeta_{\mu}(b)}\right)^{-\mathcal{D}(b,\mu)} f_{1T,q\leftarrow h}^{\perp}(x,b)$$

- The function  $f_{1T,q\leftarrow h}^{\perp}(x,b) = f_{1T,q\leftarrow h}^{\perp}(x,b;\mu,\zeta_{\mu}(b))$  on rhs is the **optimal** Sivers function
- $\zeta_{\mu}(b)$  is a calculable function of the universal non-perturbative Collins-Soper kernel  $\mathcal{D}(b,\mu)$ , parametrized as

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{resum}}(b^*,\mu) + c_0 b b^*, \qquad b^* = b / \sqrt{1 + (b / (2 \text{ GeV}^{-1}))^2}$$

• N<sup>3</sup>LO expressions are used for  $\zeta_{\mu}(b)$  and  $\mathcal{D}_{\text{resum}}$ 

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Data selection

• TMD factorization applies in the limit of large Q and small relative transverse momentum  $\delta$ . Selection criteria:

$$\langle Q \rangle > 2 \text{ GeV}$$
 and  $\delta^{\text{SIDIS}} = \frac{|P_{h\perp}|}{zQ}, \ \delta^{\text{DY}} = \frac{|q_T|}{Q} < 0.3$ 



# Parametrization of Sivers function

- We do not use small-*b* matching for Sivers functions (presence of unknown twist-3 distributions, besides Qiu-Sterman function)
- Optimal Sivers function is a generic NP function, extracted from the data, parametrized as

$$f_{1T;q\leftarrow h}^{\perp}(x,b) = N_q \frac{(1-x)x^{\beta_q}(1+\epsilon_q x)}{n(\beta_q,\epsilon_q)} \exp\left(-\frac{r_0+xr_1}{\sqrt{1+r_2x^2b^2}}b^2\right)$$
$$n(\beta,\epsilon) = (3+\beta+\epsilon+\epsilon\beta)\beta!/(\beta+3)! \Rightarrow \int_0^1 dx f_{1T;q\leftarrow h}^{\perp}(x,0) = N_q$$

- Separate functions for u, d, s, single sea Sivers function for  $\bar{u}, \bar{d}$  and  $\bar{s}$ ;  $\beta_s = \beta_{sea}$  and  $\epsilon_s = \epsilon_{sea} = 0$ , since small-x behavior is not restricted by data
- 12 free parameters in total
- $\bullet$  QS function is then obtained from the small-b limit of the extracted Sivers function

# Fit result

| Name                       | $\chi^2/N_{pt}[\text{SIDIS}]$ | $\chi^2/N_{pt}[\mathrm{DY}]$ | $\chi^2/N_{pt}$ [total] |
|----------------------------|-------------------------------|------------------------------|-------------------------|
| SIDIS at NNLO              | 0.88                          | 1.29 no fit                  | 0.95                    |
| SIDIS+DY at NNLO           | 0.90                          | 0.94                         | 0.91                    |
| SIDIS at N <sup>3</sup> LO | 0.87                          | 1.23 no fit                  | 0.93                    |
| SIDIS+DY at $N^{3}LO$      | 0.88                          | 0.90                         | 0.88                    |



1

 $\exists \mapsto$ 

#### Description of the data



# Qiu-Sterman function

$$\begin{split} T_q(-x,0,x;\mu_b) &= -\frac{1}{\pi} f_{1T;q\leftarrow h}^{\perp}(x,b) \\ &\quad -\frac{\alpha_s(\mu_b)}{4\pi^2} \int_x^1 \frac{dy}{y} \Big[ \frac{\bar{y}}{N_c} f_{1T;q\leftarrow h}^{\perp} \left( \frac{x}{y}, b \right) + \frac{3y^2 \bar{y}}{2x} G^{(+)} \left( -\frac{x}{y}, 0, \frac{x}{y}; \mu_b \right) \Big] + \mathcal{O}(a_s^2, b^2) \end{split}$$



x

Dashed line - JAM20 results (Cammarota  $et al_{\Box}$  )  $\langle \Box \rangle$   $\langle \Box \rangle$  )  $\langle \Box \rangle$   $\langle \Box \rangle$  )

Marcin Bury

10<sup>th</sup> December 2020

N<sup>3</sup>LO extraction of Sivers functions

э

# Conclusions

- We performed the extraction of the Sivers function that consistently utilizes previously extracted unpolarised proton and pion TMDs, and uses SIDIS, pion-induced Drell-Yan, and  $W^{\pm}/Z$ -bozon production experimental data
- The extraction is performed at N<sup>3</sup>LO perturbative precision within the  $\zeta$ -prescription that allows us to unambiguously relate the Sivers function and QS function
- Our results compare well in magnitude with the existing extractions
- We confirm the signs of Sivers functions for u and d quarks while we also obtain non negligible Sivers functions for anti-quarks
- The analysis was done with artemide package
- The fitting codes and the results of the extraction (in the form of replica-distributions for model parameters) are publicly available