Resummation, Evolution, Factorization 2020

Andrea Simonelli, Università degli Studi di Torino

In collaboration with M. Boglione

Factorization of $e^+e^- \rightarrow HX$ cross section, differential in z_h , P_T and Tin the 2-jet limit

The BELLE Cross Section

Cross section of $e^+e^- \rightarrow HX$, differential in:

Assumptions:

- Thrust axis = jet axis
- **2**-jet limit $T \sim 1$

Spinless hadron (charged pions π^{\pm})

 \mathbf{P}_h

 P_{hT}

 \mathbf{n}

The BELLE Cross Section

Naive structure (single hadron): $\sigma \sim \hat{\sigma} \otimes D_1$

Actual structure, resulting from (CSS) factorization procedure:

Still not the final version:

- Subtraction and Renormalization mechanism (Partonic Cross Section)
- Rapidity cut-offs

Lets consider a fragmenting quark of flavor f:

Virtual Emission

Gluon collinear to fragmenting quark $\propto J_{q/q}^{[1]}\left(\epsilon;\,1-T,\,z\right)$

Soft Gluon $\propto S^{[1]}(\epsilon; 1-T) \,\delta(1-z)$

Gluon collinear to antiquark (backward) $\propto J_B^{[1]}\left(\epsilon;\,1-T\right)\delta(1-z)$

Partonic Cross Section

Evolution Equations

Four energy scales: ${\it Q},\,\mu,\,\zeta$ and $\,\lambda$:

$$\frac{\partial}{\partial \log \mu} \log \frac{d\hat{\sigma}_f(\mu, \lambda, \zeta)}{dz \, dT} = -\gamma_D \left(\alpha_S(\mu), \zeta/\mu^2 \right)$$
$$\frac{\partial}{\partial \log \sqrt{\zeta}} \log \frac{d\hat{\sigma}_f(\mu, \lambda, \zeta)}{dz \, dT} = \frac{1}{2} \hat{K} \left(\alpha_S(\mu), \mu^2/\lambda^2 \right)$$
$$\frac{\partial}{\partial \log \lambda} \log \frac{d\hat{\sigma}_f(\mu, \lambda)}{dz \, dT} = G \left(\alpha_S(\mu), \mu^2/Q^2, \zeta/\mu^2, \mu^2/\lambda^2 \right)$$

$$\frac{d\widehat{\sigma}_{f}(\mu,\,\lambda,\,\zeta)}{dz\,dT} = \frac{d\widehat{\sigma}_{f}}{dz\,dT} \bigg|_{\text{ref.}} \exp\left\{ \int_{\mu}^{Q} \frac{d\mu'}{\mu'} \gamma_{D} \left(\alpha_{S}(\mu'),\,\zeta/(\mu')^{2}\right) \right\} \times \\ \times \exp\left\{ \frac{1}{4} \,\widehat{K}\left(\alpha_{S}(Q),\,1\right) \,\log\frac{\zeta}{Q^{2}} - \int_{\lambda}^{Q} \frac{d\lambda'}{\lambda'} \,G\left(\alpha_{S}(Q),\,1,\,\zeta/Q^{2},\,Q^{2}/(\lambda')^{2}\right) \right\}$$

Evolution Equations

Four energy scales: Q, μ, ζ and λ :

$$\times \exp\left\{\frac{1}{4}\widehat{K}\left(\alpha_{S}(Q),\,1\right)\,\log\frac{\lambda^{2}\zeta}{Q^{2}}-\int_{\lambda}^{Q}\,\frac{d\lambda'}{\lambda'}\,G\left(\alpha_{S}(Q),\,1,\,\zeta/Q^{2},\,Q^{2}/(\lambda')^{2}\right)\right\}$$

Evolution Equations

$$\begin{aligned} \sigma_B e_f^2 N_C \left(\delta(1-z) \,\delta(\tau) + \right. \\ &+ \frac{\alpha_S(Q)}{4\pi} \, 2 \, C_F \left\{ \delta(1-z) \left[\delta(\tau) \left(-\frac{9}{2} + \frac{\pi^2}{3} \right) - \frac{3}{2} \left(\frac{1}{\tau} \right)_+ - 4 \left(\frac{\log \tau}{\tau} \right)_+ \right] + \\ &+ 2 \left[-\frac{z}{1-z} \log z - \log \left(1-z \right) + \left(\frac{\log \left(1-z \right)}{1-z} \right)_+ \right] \,\delta(\tau) \right\} + \mathcal{O} \left(\alpha_S(Q)^2 \right) \right) \end{aligned}$$

Partonic Cross Section at NLO (ref. scale)

$$\begin{aligned} \frac{d\widehat{\sigma}_{f}}{dz \, dT} \Big|_{\text{ref.}} \stackrel{\text{NLO}}{=} \sigma_{B} e_{f}^{2} N_{C} \left(\delta(1-z) \, \delta(\tau) + \frac{\alpha_{S}(Q)}{4\pi} \, 2 \, C_{F} \left\{ \delta(1-z) \left[\delta(\tau) \left(-\frac{9}{2} + \frac{\pi^{2}}{3} \right) - \frac{3}{2} \left(\frac{1}{\tau} \right)_{+} - 4 \left(\frac{\log \tau}{\tau} \right)_{+} \right] + 2 \left[-\frac{z}{1-z} \log z - \log (1-z) + \left(\frac{\log (1-z)}{1-z} \right)_{+} \right] \delta(\tau) \right\} + \mathcal{O} \left(\alpha_{S}(Q)^{2} \right) \right) \end{aligned}$$

Written in terms of τ -distributions \longrightarrow Pheno requires functions

Partonic Cross Section at NLO (ref. scale)

$$\frac{d\widehat{\sigma}_f}{dz\,dT} = \left[-\sigma_B e_f^2 N_C \frac{\alpha_S(Q)}{4\pi} C_F \delta(1-z) \left[\frac{3+8\log\tau}{\tau}\right] + \mathcal{O}\left(\alpha_S(Q)^2\right)\right] e^{-\frac{\alpha_S(Q)}{4\pi} 3C_F \log^2 \frac{\lambda^2}{Q^2} + \mathcal{O}\left(\alpha_S(Q)^2\right)}$$

$$\frac{d\widehat{\sigma}_f}{dz\,dT} = \left[-\sigma_B e_f^2 N_C \frac{\alpha_S(Q)}{4\pi} C_F \delta(1-z) \left[\frac{3+8\log\tau}{\tau}\right] + \mathcal{O}\left(\alpha_S(Q)^2\right)\right] e^{-\frac{\alpha_S(Q)}{4\pi} 3C_F \log^2 \frac{\lambda^2}{Q^2} + \mathcal{O}\left(\alpha_S(Q)^2\right)}$$

Almost finished...we still have to fix λ ! Remember: $k_T \leq \lambda$

But
$$k_T$$
 is naturally constrained by kinematics: $k_T \leq \sqrt{\tau}Q$

$$\frac{d\widehat{\sigma}_f}{dz\,dT} = \left[-\sigma_B e_f^2 N_C \frac{\alpha_S(Q)}{4\pi} C_F \delta(1-z) \left[\frac{3+8\log\tau}{\tau}\right] + \mathcal{O}\left(\alpha_S(Q)^2\right)\right] e^{-\frac{\alpha_S(Q)}{4\pi} 3C_F(\log\tau)^2 + \mathcal{O}\left(\alpha_S(Q)^2\right)}$$

But k_T is naturally constrained by kinematics: $k_T \leq \sqrt{\tau}Q$

Now we are ready for phenomenology!

Final Results

Non-perturbative functions:

 $g_K(b_T) = a \ b_T^2$ \blacktriangleright Quadratic behavior (common choice)From past extractions: $0.01 \ {\rm GeV}^2 \le a \le 0.1 \ {\rm GeV}^2$ Our choice: $a = 0.05 \ {\rm GeV}^2$

$$(M_D)_{f, \pi^{\pm}}(z, b_T) \equiv M_D(b_T) = \frac{2^{2-p}}{\Gamma(p-1)} (b_T m)^{p-1} K_{p-1}(b_T m)$$
Power-law model

$$\mathcal{FT}\{M_D\} = \frac{\Gamma(p)}{\pi \Gamma(p-1)} \frac{m^{2(p-1)}}{(k_T^2 + m^2)^p}$$
Common sense:
$$m = 1 \text{ GeV} \quad \text{generic hadronic mass}$$

$$p = 2 \qquad \text{propagator squared}$$

$$M_D = \frac{2^{2-p}}{\Gamma(p-1)} (b_T m)^{p-1} K_{p-1}(b_T m)$$

Final Result: Comparison with BELLE data (no fit)

22 / 32

Conclusions and Future Remarks

• We have factorized (CSS) the cross section of $e^+e^- \rightarrow HX$, differential in z_h , P_T and T.

- We have obtained a very good agreement with BELLE data (only three parameters fixed to sensible values – no fit)
- The TMD FFs are defined differently from the usual square root definition:

Promising applications in SIDIS and $e^+e^- \rightarrow H_1 H_2 X$, with back-to-back hadrons, 3-h class processes, e.g. $\ell h \rightarrow \ell' J_1 J_2 X$ (see talk by F. Del Castillo, 08/12 Room 8), Λ -production in e^+e^- (single- and double-hadron), etc...

THANK YOU FOR YOUR ATTENTION!

Resummation, Evolution, Factorization 2020

Andrea Simonelli, Università degli Studi di Torino

In collaboration with M. Boglione

BACKUP SLIDES

Definition of TMDs: Building Blocks

DEFINITIONS	RAPIDITY INTERVAL
• Unsubtracted TMD FF: $\widetilde{D}_{1,H/f}^{(0),\text{unsub}}(z,b_T;\mu,y_P,-\infty) = \\ = \frac{1}{z} \sum_X \langle P(H),X;\text{out} \overline{\psi}_f(-x/2) W_q(-x/2,\infty;n_1(y_1))^{\dagger} 0 \rangle \\ \langle 0 W_q(x/2,\infty;w) \psi_f(x/2) P(H),X;\text{out} \rangle _{\text{NO S.I.}} $	$-\infty \le y \le y_P \ (\sim +\infty)$
• 2-h Soft Factor $\widetilde{\mathbb{S}}_{2-\mathbf{h}}^{(0)}(b_T; \mu, y_1 - y_2) = \\ = \frac{\text{Tr}_C}{N_C} \langle 0 W(-\vec{b}_T/2, \infty; n_1(y_1))^{\dagger} W(\vec{b}_T/2, \infty; n_1(y_1)) \\ W(\vec{b}_T/2, \infty; n_2(y_2))^{\dagger} W(-\vec{b}_T/2, \infty; n_2(y_2)) 0 \rangle _{\text{NO S.I.}}$	$y_2 \le y \le y_1$

Where:

- b_T is the variable Fourier conjugate to transverse momentum.
- (0) label reminds that the quantities are *bare* (need for UV renormalization).

Definition of TMDs: Soft Subtraction

DEFINITIONS	RAPIDITY INTERVAL
Factorization Definition (see $e^+e^- \rightarrow HX$, $T \sim 1$) $\widetilde{D}_{1,H/f}(z, b_T; \mu, y_P - y_1) =$ $= Z_j(\mu, y_P - y_1)Z_2(\alpha_S(\mu)) \times \qquad \qquad$	$y_1 \le y \le y_P \ (\sim +\infty)$
• Square Root Definition (see $e^+e^- \rightarrow H_1 H_2 X$, back-to-back) $\widetilde{D}_{H_1/f}^{\text{sqrt}}(z, b_T; \mu, y_P - y_1) =$ $= Z_j(\mu, y_P - y_1)Z_2(\alpha_S(\mu)) \times $ $\times \lim_{\substack{y_{u_1} \rightarrow +\infty \\ y_{u_2} \rightarrow -\infty}} \widetilde{D}_{1,H/f}^{(0), \text{ unsub}}(z, b_T; \mu, y_P - y_{u_2}) \times$ $\times \sqrt{\frac{\widetilde{S}_{2-h}(b_T; \mu, y_{u_1} - y_1)}{\widetilde{S}_{2-h}(b_T; \mu, y_{u_1} - y_{u_2})}} \times$	$y_1 \le y \le y_P \ (\sim +\infty)$

Single-Hadron Cross Section

$$\frac{d\sigma}{dz_h \, dT \, dP_T^2} = z_h \, \frac{\alpha^2}{4Q^4} \, \int_0^{2\pi} d\phi \, \int_0^{\pi} d\theta \, L_{\mu\nu}(\theta) \, \frac{dW_H^{\mu\nu}(z_h, \, T, \, P_T)}{dP_T^2}$$

Leptonic Tensor (LO in QED):

 $L^{\mu\nu}(\theta) = l_1^{\mu} \, l_2^{\nu} + l_2^{\mu} \, l_1^{\nu} - g^{\mu\nu} \, l_1 \cdot l_2$

Hadronic Tensor:

$$W_{H}^{\mu\nu}(z_{h}, T, P_{T}) = 4\pi^{3} \sum_{X} \delta^{(4)} (p_{X} + P - q) \times \\ \times \langle 0 | j^{\mu}(0) | P, X, \text{ out } \rangle_{T T} \langle P, X, \text{ out } | j^{\nu}(0) | 0 \rangle = \\ = \frac{1}{4\pi} \sum_{X} \int d^{4}z \, e^{iq \cdot z} \langle 0 | j^{\mu} (z/2) | P, X, \text{ out } \rangle_{T T} \langle P, X, \text{ out } | j^{\nu} (-z/2) | 0 \rangle$$
Normalization

J. Collins, Foundations of perturbative QCD.

Partonic Cross Section: Subtraction Mechanism

In the partonic cross section, the contribution associated to the radiation collinear to the fragmenting quark is given by:

	UNSUBTRACTED	SUBTRACTION TERM	
DEFINITIONS	$J^{[1],(\lambda)}_{q/q}(\epsilon; au,z)$	$-z\widetilde{D}^{[1],(\lambda)}_{q/q}(\epsilon;z,\zeta)\delta(au)$	
TRANSVERSE MOMENTUM INTERVAL	$0 \le k_T \le \lambda$	$0 \le k_T \le \lambda$	Matched
RAPIDITY INTERVAL	$\frac{1}{2}\log\frac{2(k^+)^2}{\lambda^2} \le y \le +\infty$	$\frac{1}{2}\log\frac{2(k^+)^2}{\zeta} \le y \le +\infty$	Matched only if $\zeta = \lambda^2$ $(\tau = 0)$

 $\zeta = \lambda^2$ ensures a correct subtraction between "hard" and collinear momentum regions.

Final Result: Comparison with BELLE data (no fit)

Final Result: Comparison with BELLE data (no fit)

