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A proof of factorization in Drell-Yan, which is generally accepted by the
community, was given by Collins, Soper and Sterman (CSS) nearly 30
years ago.

SCET has proven very useful in generating factorization formulae for
various observables.

However, these proof always rely on CSS in that there is no proof of
cancellation of Glauber modes.

Would like to revisit this proof in the context of EFT

Hopefully by plugging this hole in the proof will allows us to generalize
to other process and design process where we can study observables
where glaubers do not cancel within the systematic confines of an EFT.



How do EFT proofs diler from those of CSS?

1) In EFT factorization is manifest at the level of the action and is abetted by
emergent symmetries that arise due to the choice of kinetmatics.

2) In EFT the decoupling of modes occurs at the level of the action.
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3) Diagrammatically in EFT the integrands are automatically asymptotically

expanded as a consequence of the multipole expansion at the level of the
action. Whereas in CSS multiple regions may be contained in one mode.

As we shall see, 1) and 2) will not apply to Glauber modes. The
cancellation go Glauber modes has yet to be tackled in EFT.



SCET Proof of DY Factorization mod
Glaubers
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TMPDF Soft Function

If we donOt measure transverse momentum then
correlator localizes in impact parameter space and
TMPDF reduces to PDF and SOFT function is one



Glaubers are hole in Proof:
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This operator obstructs factorization. Must prove it does not

contribute to all orders if we want to make predictions in terms of
PDF’s.

The situation IS even worse because we also have
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Glauber SCET 1601.04695
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Glauber Loops
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Similar results hold for n-s Glauber boxes


https://arxiv.org/abs/1202.0814

Glauber iterations can be resummed
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Within in the context of hadronic hard scattering
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Similar result hold for active-active and active-spectator,
however, it can be shown that those contribution are actually
captured by Soft and Collinear Wilson lines respectively

Thus we can determine the conditions under which Glaubers
will cancel, if we ignore collinear and soft corrections
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Once we include soft+collinear we lose this argument and

can no longer rely upon exponentiation to cancel
Glaubers



What happens when we add soft and collinear
corrections?

CSS treat collinear sectors separately, we dont have that ability because in
EFT integrands are expanded at the level of the action, which forces us to
regulate the rapidity, and stop us from doing LCPT (non-analytic in light

cone momentum).

However we dont want to abandon doing some form of ordered
perturbation theory . Because for all orders proofs it is invaluable. In particular we want
to utilize the unitarity identity to show the vanishing of sums over cuts of bxed ordered

diagrams

Furthermore having some form of ordering allows us to
organize the calculation in terms of Pnal and initial state
Interactions.

We introduce the Notion of GOPT: Glauber
ordered perturbation theory
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Since in general phase cancellation is wont work once we
Include soft and collinear corrections, we brst should redo
the case of pure Glaubers utilizing GOPT

The proof follows by brst distinguishing initial
from Pnal state interactions. This distinction,
between initial and bnal, is well debned once we

have done GOPT ordering.
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Final State Glaubers
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This is an example of a bnal state Glauber. Note that the
glauber momentum never shows up in the ends, only in
the boxes. This allows us to ignore the ends when treating

Pnal state interactions.

We can then use the unitarity identity to prove that for a
bxed ordering the sum over cuts gives zero.



Initial State Glaubers

Initial state Glaubers will resum into a phase and cancel
In the squared amplitude
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Mixed-Initial State
Glaubers

Initial state doesnOt elect cancellation of Pnal state cuts
(proper momentum routing makes explicit).



We have established a new way to

think about cancellations with pure

Glaubers, how do collinear change
things?

Final State interactions
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Since were summing over cuts for bxed ordering the addition
of collinear has no e!ect the cancellation via the unitarity identity



Initial State interactions

Glauber Loop

Two glauber energy denominator with poles on the same
side. Note: need at least two denominator, as a single
denominator is divergent and the rapidity regulator
obstructs contour integration.

General Rule : Collapse picture. There can be
no obstructions between the Glauber burst
and the hard interaction vertex

So only initial state corrections left over
must occur prior to ANY Glauber burst



General form for non-vanishing initial state
corrections

Glauber bursts

Glauber Burst onto each color structure generates a
phase color tensor product space.
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Soft Final States

Crucial points about softs is that only their transverse
momentum Rows into other sectors. The light cone
moment would throw other modes o! shell. This

leads to great simplibcations
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Must route to momenta to maintain on-shell condition
for collinear lines. We can thendrop St

Which now only shows up in the purple line. Softs have
no elect on glauber loops.



We do however, have to show that all the cuts are equally
weighted to ensure cancelations of @ﬂtarity identity
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The soft part of each cut is identical, such that the
Glaubers cancel as if they were &(/)t there.
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Soft initial states

Phase argument now falls, soft serve as an obstruction

However, if the soft were not there we would still have
cancellation order by order. So as long as the cut soft
and the uncut soft weigh the Glauber integrals
identically then we will bnd a cancellation. Again, this

IS only possible within the EFT.
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Sum to zero as long as cut soft weights the Glaubers in
the same way as the virtual. The criteria is the same as
for initial states. This occurs only because the EFT is

multipole expanded.



EFT proof distant from CSS due to the fact that EFT
expands prior to integration. "

Introduce GOPT to be able to use ordered PT while still

treating collinear and anti-collinear belds simultaneously

Proof follows either by phase cancellations (initial states
corrections). Or by unitarity identity for bnal state
corrections”

EF

may help in more general circumstances to prove or

disprove factorization. We will see.



