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For pp, several cases where factorisation has been shown to hold:

• Collinear factorisation for DY

• TMD factorisation for DY

• Collinear/TMD factorisation for ‘double Drell-Yan’
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This talk: review traditional QCD (‘CSS’-style) approach to factorisation, 
focussing on Glauber cancellation aspect. 
Then discuss some model calculations with a few Glauber exchanges 
– illustrates why CSS Glauber cancellation works, when it fails, and 
where CSS proof could be improved.
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FACTORISATION
Factorisation is a key tool to make predictions at the LHC.



LEADING REGIONS
3

Step 1: Consider arbitrary Feynman graph contributing to production of 
state of interest. 

What regions of loop momenta can give leading contributions to cross 
section?

Hard: 𝑘~𝑄 1,1,1

Collinear: 𝑘~𝑄 1, 𝜆!, 𝜆

Soft: 𝑘~𝑄 𝜆", 𝜆", 𝜆"

Glauber: 𝑘#𝑘$ ≪ 𝒌! ≪ 𝑄! (e.g. 𝑘 ∼ 𝑄 𝜆!, 𝜆!, 𝜆 )

+ component   - component   T component

+
–

Proton A

Proton B
𝜆 ≪ 1

Transverse

z
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More specifically, looking for leading regions around pinch singularities:

Pinch singularity Non-pinched singularity

Integration 
contour

PoleComplex 
plane



PINCH SINGULARITIES
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More specifically, looking for leading regions around pinch singularities:

Integration 
contour

PoleComplex 
plane

If singularity is not pinched, can deform contour in complex plane
away from poles into another momentum region 
→ don’t have to consider unpinched region explicitly.



LEADING REGIONS FOR DY
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Leading region for TMD process:

Amplitude Conjugate Amplitude

Collinear to A

Collinear to B

Soft and Glauber Entangles the two collinear 
sectors! How do we deal 
with these exchanges?

Unphysically 
polarised gluons



WARD IDENTITIES
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If blob S only contained central soft, 
could strip attachments to collinear 
blobs using Ward identities:

⨂

p-k p

k Eikonal piece

soft soft

Propagator denominator:

𝜆" 𝜆!"

𝜆! 𝜆!Same manipulation is not possible for 
Glauber gluons:

How do we get around this problem?

Simple example:



TREATING GLAUBERS
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CSS strategy – try to show that pinched Glauber exchanges ‘cancel’. 
Works for DY, both TMD + collinear cross section.

Then can deform integration contours away from Glauber region.

Let’s briefly review this.

Bodwin Phys. Rev. 31 (1985) 2616, Collins, Soper, Sterman, Nucl. Phys. B308 (1988) 833, Collins, pQCD
book
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Partition graph into collinear graph A and remainder R. 

x

t x+x-

P P’

Consider A in x+ ordered 
perturbation theory (LCPT)

CSS GLAUBER CANCELLATION PROOF



10

𝑃

𝑘 +-
%

ℓ%

ℓ& ℓ!

1
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Sum over topologies + ‘time’ orderings. Have ‘states’ between vertices

1
𝑃$ + ℓ&$ − 𝜅&$ − 𝜅)$ − 𝜅*$ + 𝑖𝜖 1

𝑃$ − 𝑘$ − ℓ!$ − 𝜅+$ + 𝑖𝜖

LC denominators:

At vertices, + and T conserved, - not, all 
lines on shell:

LCPT
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P

Cut c

ℓ%$s here are trapped at small values

LCPT FOR COLLINEAR GRAPH
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P

If remainder is independent of partioning of soft vertex attachments 
between ℳ and ℳ∗, can sum over all cuts of A:

Cutkosky rules/
unitarity

Independence of R on partitioning is 
shown by studying R using x- ordered LCPT 

CANCELLATION OF GLAUBER PINCHES
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𝐴

𝑅

:𝑅

𝐵

Could perform argument for both A and B: allows deformation of both 
ℓ%$s entering A and ℓ%#s entering B 

Seemingly allows deformation of Glauber momenta into central soft 
region, or collinear to A/B.

CSS ARGUMENT: BOTH DIRECTIONS



14

Can illustrate unitarity cancellation 
using a model calculation.

‘Meson’ composed from 𝑞=𝑞

Consider two gluon exchanges 
between spectator particles

Plus and minus components of this loop are trapped in Glauber region

‘Parton model’ graph
+

-

+

-

UNITARITY CANCELLATION: ILLUSTRATION
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+

-

Consider first cut here

Perform + and – integrations of this loop momentum, close on poles of 
spectator legs

⊗

TWO GLAUBER EXCHANGES
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+

-

⊗

TWO GLAUBER EXCHANGES
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Consider case where we measure pT of V. For given momenta in the three 
decomposed graphs, the value of the measurement is the same.

è can factor out the parton model graph and measurement and add 
together the Glauber subgraphs:

𝒌& 𝒌! 𝒌'

−𝒒 − 𝒌&
−𝒒 − 𝒌!

−𝒒 − 𝒌'

- Imaginary part + sum over internal cuts = 0

Cutkosky rules

TWO GLAUBER EXCHANGES: UNITARITY CANCELLATION

𝒒 = pT of V
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𝒌& 𝒌! 𝒌'

−𝒒 − 𝒌&
−𝒒 − 𝒌!

−𝒒 − 𝒌'

Consider instead measuring ET:

𝐸- = 𝒌& + 𝒒 + 𝒌& 𝐸- = 𝒌' + 𝒒 + 𝒌' 𝐸- = 𝒌! + 𝒒 + 𝒌!

CSS-style cancellation does not happen – factorisation breaking at two 
Glauber exchange level?

HADRONIC TRANSVERSE ENERGY
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For perturbative regime: i.e. ‘meson’ → 𝑞=𝑞 vertex is 𝑔 → 𝑞=𝑞 vertex, 
neglect quark/hadron masses, cancellation still occurs at this level

In all of these pieces, a 
‘pure transverse’ piece 
can be factored out

C
𝑑!𝑞
|𝒒|!F

.

𝑑!𝒌.
|𝒒|! 𝑓

𝒌.
|𝒒| ,

𝒒
|𝒒|Graph = 

𝐸-,& = 𝒌& + 𝒒 + 𝒌& 𝐸-,! = 𝒌! + 𝒒 + 𝒌! 𝐸-,' = 𝒌' + 𝒒 + 𝒌'

Rescale all momenta by 𝐸-,&/𝐸-,. - brings all measurements to same 
value, allows cancellation

1 2 3

TWO GLAUBER EXCHANGES FOR 𝐸I

Schwartz, Yan, Zhu, Phys. Rev. D 97, 096017 (2018)
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This cancellation for ET, unlike that for pT, is rather delicate – relies on 
no scales appearing in factorized transverse piece

At next order this 
picture will be 
broken e.g. by this 
type of diagram
(ladder allows + 
and – sectors to 
‘communicate’)

FACTORISATION VIOLATION FOR 𝐸I

N.B. scaling argument for cancellation of 2-Glauber exchange only 
works for single scale observables. For two-scale observable (beam 
thrust differential in two hemispheres), explicit factorisation violation 
due to 2-Glauber exchange shown in Zeng, JHEP 10 (2015) 189
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⊗

These factorisation breaking effects are related to additional low-scale 
scatters, or multiple parton interactions (MPI). 

Glauber cancellation for the pT observable works because this is 
insensitive to whether extra scatters occurred or not.

Secondary low scale 
absorptive process

Secondary low 
scale scattering

Primary 
process

Can view factorisation violating diagrams in the following way:

FACTORISATION VIOLATION AND MPI
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Explicit study of factorisation at work at the two gluon exchange level:
SciPost Phys. 3, 040 (2017) (Boer, van Daal, JG, Kasemets, Mulders)

Unpolarised TMD
Boer-Mulders TMD
(measures correlation 
between quark transverse 
spin and transverse mtm)Collins-Soper angles

Studied azimuthal-angle-dependent part of TMD cross section in Drell-
Yan 

EXPLICIT FACTORIZATION STUDY
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Model calculation: each hadron is a 
massive spin ½ particle than can split into a 
massless spin ½ quark and a massive scalar 
'diquark' via a Yukawa-type interaction. 

ℎ&0

=ℎ&0
Leading contribution to 
factorised formula requires a 
gluon exchange in each BM 
function

Region of gluon momentum 
that contributes in ℎ&0, =ℎ&0 is 
exactly Glauber region

Colour factor of leading term in factorised formula = 𝐶1𝐶2 !/𝑁3

MODEL
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Compare to ab initio leading power cross section calculation. Key 
diagrams:

(a) (b) (c)

C1G

GC2

G1G2

C1C2

Central Glauber

Left-moving Glauber

Left-moving collinear
Right-moving Glauber

Right-moving collinear

Full calculation difficult. Split into leading 
power regions

CALCULATION AT 2G EXCHANGE LEVEL



(a) (b) (c)

where I(n) are the integrals over larger (λ scaling) lightcone components :

Just initial-state poles in ℓ&#, ℓ!$

Initial- and final-state poles

Let's look in detail at G1G2 region calculation

25

CALCULATION: G1G2 REGION



Now:

Final-state poles 
cancel (ensured by 
unitarity!)

Restores colour factor predicted 
by factorisation! (ensured by Ward 
identities!)
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CALCULATION: G1G2 REGION
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+ +

All regions except for G1G2 turn out to give 0, &:

G1G2

=
Double Glauber 
contribution absorbed 
into collinear functions!

CALCULATION: G1G2 REGION
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(b) (c)

R

A

Can we use CSS argument with this partitioning, show that ℓ&$ is not 
trapped? Would be needed to deform ℓ& into soft region

For A the argument goes through…

CALCULATION IN CONTEXT OF CSS PROOF
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However, for R the argument fails, as R does depend on partitioning of 
soft vertices in A. 

Culprit seems to be numerator factor coming from 3g vertex:

If these numerators were removed, could perform ℓ&# using contours 
and R would be the same for the two cuts (& we’d have 𝐼(5) + 𝐼(3) = 0)

N.B. CSS cancellation proof does not consider numerator explicitly.

Highlights room for improvement in CSS proof – desirable to have a 
better proof that describes which Glaubers can be deformed into soft, 
which into collinear.

CALCULATION IN CONTEXT OF CSS PROOF
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• Factorisation works for the total & TMD cross sections for colour
singlet production. Reviewed CSS proof of cancellation of 
Glauber pinches. Argument is based on unitarity.

• CSS-style argument fails for hadronic transverse energy 𝐸-. 
Breakdown of standard factorisation for 𝐸- (and similar event 
shapes in pp) – requires at least two Glaubers exchanged.

• Showed explicitly that factorisation works for azimuthally-
dependent part of TMD DY cross-section at two-loops in a model. 
Highlights a key point where CSS proof could be improved.


