Polarized pion induced Drell-Yan and TMD factorization

Alexei Prokudin

The Drell-Yan process with pions and polarized nucleons

S. Bastami^{*a*} L. Gamberg^{*b*} B. Parsamyan^{*c*,*d*} B. Pasquini^{*e*,*f*} A. Prokudin^{*b*,*g*} P. Schweitzer^{*a*}

TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION

Small scale $q_T \ll Q$ — Large scale

The confined motion (k_T dependence) is encoded in TMDsSemi-Inclusive DISDrell-YanDihadron in e+e- $\sigma \sim f_{q/P}(x, k_T) D_{h/q}(z, k_T)$ $\sigma \sim f_{q/P}(x_1, k_T) f_{\bar{q}/P}(x_2, k_T)$ $\sigma \sim D_{h_1/q}(z_1, k_T) D_{h_2/\bar{q}}(z_2, k_T)$

Meng, Olness, Soper (1992) Ji, Ma, Yuan (2005) Idilbi, Ji, Ma, Yuan (2004) Collins (2011)

Collins, Soper, Sterman (1985) Ji, Ma, Yuan (2004) Collins (2011)

Collins, Soper (1983) Collins (2011)

Analogous tables for: \bigcirc Gluons $f_1 \rightarrow f_1^g$ etc

Fragmentation functions

• Pion, nuclear targets $S \neq \frac{1}{2}$

 $\pi^-(P_\pi) + N(P_p, S) \to \ell^+ \ell^- + X$

Measured by COMPASS

Advantageous, since

 $\bar{u} + u \to \gamma^*$ subprocess is enhanced

Collins-Soper frame

Cross-Section is expressed in terms of structure functions

$$\frac{d\sigma}{d^4q \, d\Omega} = \frac{\alpha_{em}^2}{F \, q^2} \times \left\{ \left(\left(1 + \cos^2 \theta \right) F_{UU}^1 + \left(1 - \cos^2 \theta \right) F_{UU}^2 + \sin 2\theta \cos \phi \, F_{UU}^{\cos \phi} + \sin^2 \theta \cos 2\phi \, F_{UU}^{\cos 2\phi} \right) \dots \right\}$$

Structure functions are convolutions of TMDs

$$\mathcal{C}[\omega f_{\pi}^{\bar{a}} f_{p}^{a}] = \frac{1}{N_{c}} \sum_{a} e_{a}^{2} \int d^{2} \mathbf{k}_{T\pi} d^{2} \mathbf{k}_{Tp} \,\delta^{(2)}(\mathbf{q}_{T} - \mathbf{k}_{T\pi} - \mathbf{k}_{Tp}) \,\omega \,f_{\pi}^{\bar{a}}(x_{\pi}, \mathbf{k}_{T\pi}^{2}) f_{p}^{a}(x_{p}, \mathbf{k}_{Tp}^{2})$$

Arnold, Metz, Schlegel Phys. Rev. D 79 (2009) 034005

 $\pi^{-}(P_{\pi}) + N(P_{p}, S) \rightarrow \ell^{+}\ell^{-} + X \rightarrow \text{Measured by COMPASS}$

Models are rich source of information in QCD

We will use models in our estimates and include Light Front Constituent Quark Models, spectator models, and a hybrid approach with phenomenological extractions

Structure functions at leading twist:

 $F_{UU}^1 = \mathcal{C}\left[f_{1,\pi}^{\bar{a}} f_{1,p}^a\right],$ Measured Not yet measured $F_{UU}^{\cos 2\phi} = \mathcal{C}\left[\frac{2(\hat{\boldsymbol{h}} \cdot \vec{\boldsymbol{k}}_{T\pi})(\hat{\boldsymbol{h}} \cdot \vec{\boldsymbol{k}}_{Tp}) - \vec{\boldsymbol{k}}_{T\pi} \cdot \vec{\boldsymbol{k}}_{Tp}}{M_{\pi} M_{p}} h_{1,\pi}^{\perp \bar{a}} h_{1,p}^{\perp \bar{a}}\right], \text{ Boer-Mulders x Boer-Mulders}$ $F_{UL}^{\sin 2\phi} = -\mathcal{C} \left[\frac{2(\hat{\boldsymbol{h}} \cdot \vec{\boldsymbol{k}}_{T\pi})(\hat{\boldsymbol{h}} \cdot \vec{\boldsymbol{k}}_{Tp}) - \vec{\boldsymbol{k}}_{T\pi} \cdot \vec{\boldsymbol{k}}_{Tp}}{M_{\pi} M_{p}} h_{1,\pi}^{\perp \bar{a}} h_{1L,p}^{\perp \bar{a}} \right], \text{Boer-Mulders x Kotzinian-Mulders}$ $F_{UT}^{\sin\phi_S} = \mathcal{C}\left[\frac{\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_{Tp}}{M_n} f_{1,\pi}^{\bar{a}} f_{1T,p}^{\perp a}\right],$ $F_{UT}^{\sin(2\phi-\phi_S)} = -\mathcal{C}\left[\frac{\hat{\boldsymbol{h}}\cdot\vec{\boldsymbol{k}}_{T\pi}}{M_{\pi}} h_{1,\pi}^{\perp\bar{a}} h_{1,p}^{a}\right],$ $F_{UT}^{\sin(2\phi+\phi_S)} = -\mathcal{C}\left[\frac{2(\hat{\boldsymbol{h}}\cdot\vec{\boldsymbol{k}}_{Tp})[2(\hat{\boldsymbol{h}}\cdot\vec{\boldsymbol{k}}_{T\pi})(\hat{\boldsymbol{h}}\cdot\vec{\boldsymbol{k}}_{Tp}) - \vec{\boldsymbol{k}}_{T\pi}\cdot\vec{\boldsymbol{k}}_{Tp}] - \vec{\boldsymbol{k}}_{Tp}^2(\hat{\boldsymbol{h}}\cdot\vec{\boldsymbol{k}}_{T\pi})}{2\,M_{\pi}\,M_p^2}\,h_{1,\pi}^{\perp\,\bar{a}}\,h_{1,\pi}^{\perp\,\bar{a}}\,h_{1T,p}^{\perp\,\bar{a}}\,\right]$

EVOLUTION

- TMD evolution is governed by two differential equations in ultraviolet and rapidity renormalization scales
- TMDs are defined in Fourier space b_T (conjugate to q_T)
- Structure functions become FT of products of TMDs in b_T -space

$$\begin{aligned} \mathcal{B}_{n}[\tilde{f}_{\pi} \ \tilde{f}_{p}] &\equiv \frac{1}{N_{c}} \sum_{a} e_{a}^{2} \int_{0}^{\infty} \frac{db_{T} \ b_{T}}{2\pi} \ b_{T}^{n} \ J_{n}(q_{T} b_{T}) \\ &\times \tilde{f}_{\pi}^{\bar{a}}(x_{\pi}, b_{T}, Q_{0}, Q_{0}^{2}) \ \tilde{f}_{p}^{a}(x_{p}, b_{T}, Q_{0}, Q_{0}^{2}) \ e^{-S(b_{T}, Q_{0}, Q_{0}^{2})} \end{aligned}$$

where S is the evolution factor Collins, Rogers Phys. Rev. D 91, 074020

$$\begin{split} S(b_T,Q_0,Q) &= -\tilde{K}(b_T,Q_0) \ln \frac{Q^2}{Q_0^2} + \int_{Q_0}^Q \frac{d\bar{\mu}}{\bar{\mu}} \left[\gamma_K(\alpha_s(\bar{\mu})) \ln \frac{Q^2}{\bar{\mu}^2} - 2\gamma_i(\alpha_s(\bar{\mu});1) \right] \\ \text{Collins-Soper kernel} & \text{Anomalous dimension, K} & \text{Anomalous dimension, K} \end{array}$$

EVOLUTION

We implement evolution at Next-to-Leading-Logarithmic precision

Collins-Soper kernel is needed for all b Collins, Rogers Phys. Rev. D 91, 074020

$$S(b_T, b_*, Q_0, Q) = \left(g_K(b_T; b_{\max}) - \tilde{K}(b_*; \mu_{b_*}) + \int_{\mu_{b_*}}^{Q_0} \frac{d\bar{\mu}}{\bar{\mu}} \gamma_K(\alpha_s(\bar{\mu}))\right) \ln \frac{Q^2}{Q_0^2} + \int_{Q_0}^{Q} \frac{d\bar{\mu}}{\bar{\mu}} \left[\gamma_K(\alpha_s(\bar{\mu})) \ln \frac{Q^2}{\bar{\mu}^2} - 2\gamma_i(\alpha_s(\bar{\mu}); 1)\right].$$

 $\tilde{K}(b_*;\mu_{b_*}) = \frac{C_F}{2} \left(\frac{\alpha_s(\mu_{b_*})}{\pi}\right)^2 \left[\left(\frac{7}{2}\zeta_3 - \frac{101}{27}\right) C_A + \frac{28}{27}T_F n_f \right]$ Collins-Soper perturbative, valid at small-b g_K is a non perturbative function for large-b

$$\gamma_i = \sum_{n=1}^{\infty} \gamma_i^{(n)} \left(\alpha_s / \pi \right)^n$$
, and $\gamma_K = \sum_{n=1}^{\infty} \gamma_K^{(n)} \left(\alpha_s / \pi \right)^n$ Anomalous dimensions

$$\gamma_K^{(1)} = 2C_F, \quad \gamma_K^{(2)} = C_F \left[C_A \left(\frac{67}{18} - \frac{\pi^2}{6} \right) - \frac{10}{9} T_F n_f \right], \quad \gamma_i^{(1)} = \frac{3}{2} C_F$$

EVOLUTION FROM MODEL TO EXPERIMENTAL SCALE

PROTON TMDS

COMPARISON TO EXPERIMENT

COMPASS data: Aghasyan et al PRL 119, 112002 (2017)

Unpolarized x Sivers

Bastami et al (2020)

COMPARISON TO EXPERIMENT

COMPASS data: Aghasyan et al PRL 119, 112002 (2017)

Pion Boer-Mulders x Transversity

Bastami et al (2020)

COMPARISON TO EXPERIMENT

COMPASS data: Aghasyan et al PRL 119, 112002 (2017)

Pion Boer-Mulders x Pretzelosity

Bastami et al (2020)

PREDICTIONS

Pion Boer-Mulders x Boer-Mulders

Pion Boer-Mulders x Kotzinian-Mulders

CONCLUSIONS

- We have studied pion induced polarized Drell-Yan process within TMD factorization at NLL precision
- Results, including model and phenomenological input, are compared to the existing data from COMPASS experiment and show a good agreement with the data
- Predictions are given for the future measurements