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Abstract: The Drell-Yan process provides important information on the internal structure of
hadrons including transverse momentum dependent parton distribution functions (TMDs). In this
work we present calculations for all leading twist structure functions describing the pion induced
Drell-Yan process. The non-perturbative input for the TMDs is taken from the light-front con-
stituent quark model, the spectator model, and available parametrizations of TMDs extracted from
the experimental data. TMD evolution is implemented at Next-to-Leading Logarithmic precision
for the first time for all asymmetries. Our results are compatible with the first experimental infor-
mation, help to interpret the data from ongoing experiments, and will allow one to quantitatively
assess the models in future when more precise data will become available.
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TMD FUNCTIONS
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 
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➤ Measured by COMPASS
Advantageous, since

subprocess is enhanced

PION INDUCED DRELL-YAN
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Figure 1. The DY process in the Collins-Soper frame where the pion and the proton come in with
different momenta P⇡, Pp, but each carries the same transverse momentum 1

2

qT , and the produced lepton
pair is at rest. The angle � describes the inclination of the leptonic frame with respect to the hadronic
plane, and �S is the azimuthal angle of the transverse-spin vector of the proton.

and use the TMD evolution formalism starting from a fixed scale Q

0

[21] in the structure functions
from Eqs. (2.1).

The evolution of TMDs is a double-scale problem, and can be implemented in momentum space
or impact parameter space with examples for both approaches in the literature [19, 32, 33, 110–112].
In our work we choose to implement the TMD evolution in the impact-parameter space with b

T

the
Fourier-conjugate variable to k

Th

where index h = ⇡ or p refers to pion or nucleon. The TMDs in
the impact-parameter space are generically given by ˜

f(x

h

, b

T

, µ, ⇣) where µ ⇠ Q is the “standard”
renormalization scale for ultraviolet logarithms, and ⇣ ⇠ Q

2 is the rapidity renormalization scale.
In principle one can solve TMD evolution equations starting from some initial scale Q

0

without
employing operator product expansion at low b

T

, Ref. [21]. The TMD at this initial scale is then
f(x

h

, b

T

, Q

0

, Q

2

0

). In this formulation the unpolarized structure function is similar to parton model
result and is expressed as [21]
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where the factor S(b

T

, Q

0

, Q) contains important effects of gluon radiation with S(b

T

, Q

0

, Q

0

) = 0

by construction [21]. One can parametrize TMDs at initial scale Q

0

as
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where x-dependent functions correspond to collinear distributions and the exponential factors are
“primordial shapes” of TMDs at the initial scale. This particular dependence is often used in
phenomenology [92, 113], corresponds to the Gaussian ansatz and is supported in models [58, 59,
66, 114, 115]. The average widths of TMDs may be flavor- and x-dependent and will be taken from
phenomenological parametrizations at Q

2

0

.
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Collins-Soper frame
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1
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⎝

(

1− sinα sin θCS cosφCS

)

q0,CM − cosα cos θCS qL,CM

qT − (cosα)−1 sin θCS cosφCS q

− sin θCS sinφCS q
(

1− sinα sin θCS cosφCS

)

qL,CM − cosα cos θCS q0,CM

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the
cm-frame. This is particularly convenient in connection with the parton model calculation in Section VI.
We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

Sµ
a,CM =

(

SaL,CM
|P⃗a,CM |
Ma

, |S⃗aT,CM | cosφa,CM , |S⃗aT,CM | sinφa,CM , SaL,CM

P 0
a,CM

Ma

)

, (55)

Sµ
b,CM =

(

SbL,CM
|P⃗b,CM |
Mb

, |S⃗bT,CM | cosφb,CM , |S⃗bT,CM | sinφb,CM , −SbL,CM

P 0
b,CM

Mb

)

, (56)

with the longitudinal components SaL,CM , SbL,CM , and the transverse components S⃗aT,CM , S⃗bT,CM . The condi-

tion S2
a = −1 implies (SaL,CM)2+(S⃗aT,CM )2 = 1 (and analogously for the hadron Hb). One can also write down,

e.g., Sµ
a in the CS-frame in terms of longitudinal and transverse components.4 Mainly for the following reason

we prefer, however, to work with components of the spin vectors in the cm-frame. If one has a pure transverse
polarization in the cm-frame (in the xz-plane), this implies also a longitudinal polarization component in the CS-
frame. Therefore, longitudinal and transverse polarization components can get mixed up when switching between
both frames. Since an experimental setup and also the parton model approximation have a closer connection to
the cm-frame than to the CS-frame it is preferable to work with cm-frame components of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS SECTION

By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=
α2
em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cosφ
UU + sin2 θ cos 2φF cos 2φ

UU

)
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(

sin 2θ sinφF sin φ
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)
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sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |S⃗aT |
[

sinφa
(

(1 + cos2 θ)F 1
TU + (1− cos2 θ)F 2

TU + sin 2θ cosφF cosφ
TU + sin2 θ cos 2φF cos 2φ

TU

)
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(

sin 2θ sinφF sinφ
TU + sin2 θ sin 2φF sin 2φ
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)]

+ |S⃗bT |
[

sinφb
(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cosφ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb
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sin 2θ sinφF sinφ
UT + sin2 θ sin 2φF sin 2φ

UT
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+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1− cos2 θ)F 2

LL + sin 2θ cosφF cosφ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because P⃗a,CS is not pointing in the z-direction.

Cross-Section is expressed in terms of structure functions

…

Arnold, Metz, Schlegel Phys.Rev.D 79 (2009) 034005

Structure functions are convolutions of TMDs

2.1 Structure functions

In the tree-level description a dilepton l, l

0 is produced from the annihilation of a quark and anti-
quark carrying the fractions x

⇡

, x
p

of the longitudinal momenta of respectively the pion and the
proton. The process is shown in the Collins-Soper frame in Fig. 1. In the case of pions colliding
with polarized protons the DY cross section is described in terms of six structure functions [12],

F

1

UU

= C

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�
. (2.1)

The subscripts indicate the hadron polarization which can be unpolarized U (pions, protons),
longitudinally L, or transversely T polarized (protons). The azimuthal angles �, �

S

are defined in
Fig. 1, where the unit vector ˆh = q

T

/q

T

points along the x-axis. Notice that in the Collins-Soper
frame the dilepton is at rest, and each incoming hadron carries the transverse momentum q

T

/2,
see Fig. 1. The convolution integrals in Eq. (2.1) are defined as [12]

C[! f
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⇡

f
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p

] =

1

N

c

X
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e
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)! f
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)f

a

p

(x

p

,k2

Tp

) , (2.2)

where !, which is a function of the transverse momenta k
T⇡

, k
Tp

and q
T

, projects out the cor-
responding azimuthal angular dependence. The sum over a = u, ū, d,

¯

d, . . . includes the active
flavors.

This partonic interpretation of DY is based on a TMD factorization [1, 2] and which applies
to the region q

T

⌧ Q. The TMDs depend on renormalization and rapidity scales which are not
indicated for brevity in (2.1) and (2.2), will be discussed in Sec. 2.2. The focus of our work is on
asymmetries of the kind

A

weight

XY

(x

⇡

, x

p

, q

T

, Q

2

) =

F

weight

XY

(x

⇡

, x

p

, q

T

, Q

2

)

F

1

UU

(x

⇡

, x

p

, q

T

, Q

2

)

, (2.3)

where various types of higher order corrections tend to largely cancel out [102–108].
The Q

2 dependence of the structure functions and asymmetries will often not be explicitly
indicated for brevity. In the following we will display results for the asymmetries as functions of
one of the variables x

⇡

, x
p

, q
T

. It is then understood that the structure functions are integrated over
other variables within the acceptance of the experiment, keeping in mind that x

⇡

, x

p

are connected
to each other by x

⇡

x

p

= Q

2

/s, where s is the center of mass energy squared.

2.2 QCD evolution of Drell-Yan structure functions

The basis for the evolution are TMD factorization theorems [1, 2, 14–22, 109] which constrain the
operator definition and define the QCD evolution of TMDs. Here we will adopt the CSS framework
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The dilution factor f and the depolarization factor D2

entering the definition of TSAs are calculated on an event-
by-event basis and are used to weight the asymmetries. For
the magnitude of the target polarization PT , an average
value is used for each data-taking period in order to avoid
possible systematic bias. In the evaluation of the depolari-
zation factors, the approximation λ ¼ 1 is used. Known
deviations from this assumption with λ ranging between 0.5
and 1 [35,36] decrease the normalization factor by at
most 5%.
The TSAs resulting from different periods are checked

for possible systematic effects. The largest systematic
uncertainty is due to possible residual variations of exper-
imental conditions within a given period. They are quanti-
fied by evaluating various types of false asymmetries in a
similar way as described in Refs. [12,30]. The systematic
point-to-point uncertainties are found to be about 0.7 times
the statistical uncertainties. The normalization uncertainties
originating from the uncertainties on target polarization
(5%) and dilution factor (8%) are not included in the quoted
systematic uncertainties.
The TSAs AsinφS

T , Asinð2φCS−φSÞ
T , and Asinð2φCSþφSÞ

T are
shown in Fig. 5 as a function of the variables xN , xπ ,
xF, and qT . Because of relatively large statistical uncer-
tainties, no clear trend is observed for any of the TSAs. The
full set of numerical values for all TSAs, including
correlation coefficients and mean kinematic values from
this measurement, is available on HepData [37]. The last
column in Fig. 5 shows the results for the three extracted
TSAs integrated over the entire kinematic range. The
average Sivers asymmetry AsinφS

T ¼ 0.060% 0.057ðstatÞ %
0.040ðsysÞ is found to be above 0 at about one standard
deviation of the total uncertainty. In Fig. 6, it is compared
with recent theoretical predictions from Refs. [19–21] that
are based on standard DGLAP and two different TMD
evolution approaches. (Note that the kinematic constraints
used in Refs. [19–21] differ from one another and also from
those used in our analysis.) The positive sign of these
theoretical predictions for the DY Sivers asymmetry was
obtained by using the sign-change hypothesis for the Sivers
TMD PDFs, and the numerical values are based on a fit of
SIDIS data for the Sivers TSA [9,11,12]. Figure 6 shows
that this first measurement of the DY Sivers asymmetry is

consistent with the predicted change of sign for the Sivers
function.
The average value for the TSAAsinð2φCS−φSÞ

T is measured to
be below 0 with a significance of about two standard
deviations. The obtained magnitude of the asymmetry is
in agreement with the model calculations of Ref. [38] and
can be used to study the universality of the nucleon trans-
versity function. The TSA Asinð2φCSþφSÞ

T , which is related to
the nucleon pretzelosity TMD PDFs, is measured to be
above 0 with a significance of about one standard deviation.
Since both Asinð2φCS−φSÞ

T and Asinð2φCSþφSÞ
T are related to the

pion Boer-Mulders PDFs, the obtained results may be used
to study this function further and to possibly determine its
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classification is to some extent subjective, it is evident that the collinear proton distributions fa

1,p

(x

p

)

are best known [25–28] thanks to DIS, DY and other data. We will utilize the MSTW extraction of
f

a

1,p

(x

p

) [26] for comparison with models and our calculations. The unpolarized TMDs fa

1,p

(x

p

,k
Tp

)

have been studied and much progress was achieved in incorporating effects of QCD evolution [29–33]
which are taken into consideration approximately in our approach as described in Section 2.2. For
the collinear pion distribution f

a

1,⇡

, listed next in Fig. 2, many extractions are available [40–45]. We
will use the MRSS fits [41].

One of the most prominent TMDs, the Sivers distribution f

?a

1T,p

was extracted from HERMES,
COMPASS, and JLab SIDIS data by several groups with consistent results [34, 38, 127–135]. We
will use the extractions of Ref. [34] labelled as “Torino” and Ref. [38] labelled as “JAM20”.

The transversity distribution, ha

1,p

, plays a crucial role in understanding the nucleon spin struc-
ture. It is predicted to generate a transverse single spin asymmetry in SIDIS coupling to the Collins
fragmentation function [136], which is also responsible for an azimuthal asymmetry in e

+

e

� anni-
hilation into hadron pairs. We will use the “Torino” parametrizations of ha

1,p

from a global QCD
analysis of SIDIS and e

+

e

� data [35] to be compared with model predictions, and the “JAM20” fit
from a global QCD analysis of SIDIS, DY, e+e�, and proton-proton data [38] for comparisons and
calculations.

The proton Boer-Mulders function h

?a

1,p

extracted from HERMES, COMPASS and DY data in
Ref. [36] will be used with the label “BMP10.” The extraction of h?a

1,p

[36] is less certain, because
in SIDIS it requires model-dependent corrections for sizable twist-4 contamination (Cahn effect).

The so-called pretzelosity function h

?a

1T,p

was extracted in Ref. [37]. We will label h?a

1T,p

from
Ref. [37] as “LP15”. Notice that large errors on extracted h

?a

1T,p

were reported in Ref. [37]. This is
the least known proton TMD for which an extraction has been attempted.

Only Kotzinian-Mulders distribution h

?a

1L,p

has not yet been extracted. It was found that the
data related to this TMD [137–139] are compatible with the WW-type approximation [39] which
we will use to approximate h

?a

1L,p

based on h

a

1,p

from “Torino” [35] and “JAM20” [38] fits.
Finally, the pion Boer-Mulders function h

?a

1,⇡

is the least known of the TMDs needed to describe
pion-proton DY process at leading twist. No extractions are currently available for this TMD.

2.5 TMDs from models

In this section we briefly review the two CQM frameworks, the LFCQM and the SPM, and compare
them in Figs. 3 and 4 to the available phenomenological extractions used in this work.

f1,p

 a      f a
1,π      f1T,      p

⊥a       h1,p

a      h1,p

⊥a       h1T,      p

⊥a        h1L,      p

⊥a        h1,   π

⊥a

LFCQM

spectator model (SPM)

parametrizations 

parametrizations 

WW-type

WW-type

LFCQM

spectator

1. LFCQM all

2. spectator all

3. LFCQM hybrid

4. spectator hybrid

DATA-BASED  KNOWLEDGE

Figure 2. TMDs entering the pion-induced polarized DY process at leading twist in the order from the
phenomenologically best to least known, and the approaches used in this work, see text.
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Pion BM function is the least known

Models are rich source of information in QCD
We will use models in our estimates and include Light Front 
Constituent Quark Models, spectator models, and a hybrid 
approach with phenomenological extractions
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Structure functions at leading twist:

2.1 Structure functions

In the tree-level description a dilepton l, l

0 is produced from the annihilation of a quark and anti-
quark carrying the fractions x

⇡

, x
p

of the longitudinal momenta of respectively the pion and the
proton. The process is shown in the Collins-Soper frame in Fig. 1. In the case of pions colliding
with polarized protons the DY cross section is described in terms of six structure functions [12],

F

1

UU

= C

f

ā

1,⇡

f

a

1,p

�
,

F

cos 2�

UU

= C

2(

ˆh · ~k
T⇡

)(

ˆh · ~k
Tp

)� ~k
T⇡

· ~k
Tp

M

⇡

M

p

h

?ā

1,⇡

h

?a

1,p

�
,

F

sin 2�

UL

= �C

2(

ˆh · ~k
T⇡

)(

ˆh · ~k
Tp

)� ~k
T⇡

· ~k
Tp

M

⇡

M

p

h

?ā

1,⇡

h

?a

1L,p

�
,

F

sin�S

UT

= C

ˆh · ~k

Tp

M

p

f

ā

1,⇡

f

?a

1T,p

�
,

F

sin(2���S)

UT

= �C

ˆh · ~k

T⇡

M

⇡

h

?ā

1,⇡

h

a

1,p

�
,

F

sin(2�+�S)

UT

= �C

2(

ˆh · ~k
Tp

)[2(

ˆh · ~k
T⇡

)(

ˆh · ~k
Tp

)� ~k
T⇡

· ~k
Tp

]� ~k2

Tp

(

ˆh · ~k
T⇡

)

2 M

⇡

M

2

p

h

?ā

1,⇡

h

?a

1T,p

�
. (2.1)

The subscripts indicate the hadron polarization which can be unpolarized U (pions, protons),
longitudinally L, or transversely T polarized (protons). The azimuthal angles �, �

S

are defined in
Fig. 1, where the unit vector ˆh = q

T

/q

T

points along the x-axis. Notice that in the Collins-Soper
frame the dilepton is at rest, and each incoming hadron carries the transverse momentum q

T

/2,
see Fig. 1. The convolution integrals in Eq. (2.1) are defined as [12]

C[! f

ā

⇡

f

a

p

] =

1

N

c

X

a

e

2

a

Z
d

2k
T⇡

d

2k
Tp

�

(2)

(q
T

� k
T⇡

� k
Tp

)! f

ā

⇡

(x

⇡

,k2

T⇡

)f

a

p

(x

p

,k2

Tp

) , (2.2)

where !, which is a function of the transverse momenta k
T⇡

, k
Tp

and q
T

, projects out the cor-
responding azimuthal angular dependence. The sum over a = u, ū, d,

¯

d, . . . includes the active
flavors.

This partonic interpretation of DY is based on a TMD factorization [1, 2] and which applies
to the region q

T

⌧ Q. The TMDs depend on renormalization and rapidity scales which are not
indicated for brevity in (2.1) and (2.2), will be discussed in Sec. 2.2. The focus of our work is on
asymmetries of the kind

A

weight

XY

(x

⇡

, x

p

, q

T

, Q

2

) =

F

weight

XY

(x

⇡

, x

p

, q

T

, Q

2

)

F

1

UU

(x

⇡

, x

p

, q

T

, Q

2

)

, (2.3)

where various types of higher order corrections tend to largely cancel out [102–108].
The Q

2 dependence of the structure functions and asymmetries will often not be explicitly
indicated for brevity. In the following we will display results for the asymmetries as functions of
one of the variables x

⇡

, x
p

, q
T

. It is then understood that the structure functions are integrated over
other variables within the acceptance of the experiment, keeping in mind that x

⇡

, x

p

are connected
to each other by x

⇡

x

p

= Q

2

/s, where s is the center of mass energy squared.

2.2 QCD evolution of Drell-Yan structure functions

The basis for the evolution are TMD factorization theorems [1, 2, 14–22, 109] which constrain the
operator definition and define the QCD evolution of TMDs. Here we will adopt the CSS framework

– 4 –

Measured
Not yet measured

Boer-Mulders x Boer-Mulders

Boer-Mulders x Kotzinian-Mulders
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TMD evolution is governed by two differential equations in 
ultraviolet and rapidity renormalization scales
TMDs are defined in Fourier space bT (conjugate to qT)
Structure functions become FT of products of TMDs in bT-space

Based on the b

T

space formalism given in Ref. [116] we write down the rest of the twist-2
structure functions. We use the convenient notation from Ref. [117],

B
n

[

˜

f

⇡

˜

f

p

] ⌘ 1

N

c

X

a

e

2

a

Z 1

0

db

T

b

T

2⇡

b

n

T

J

n

(q

T

b

T

)

⇥ ˜

f

ā

⇡

(x

⇡

, b

T

, Q

0

, Q

2

0

)

˜

f

a

p

(x

p

, b

T

, Q

0

, Q

2

0

) e

�S(bT ,Q0,Q)

, (2.7)

which leads to the following expressions for the twist-2 structure functions,

F

1

UU

(x

⇡

, x

p

, q

T

, Q

2

) = B
0

[

˜

f

1,⇡

˜

f

1,p

] , (2.8)

F

cos 2�

UU

(x

⇡

, x

p

, q

T

, Q

2

) = M

⇡

M

p

B
2

[

˜

h

?(1)

1,⇡

˜

h

?(1)

1,p

] , (2.9)

F

sin 2�

UL

(x

⇡

, x

p

, q

T

, Q

2

) = �M

⇡

M

p

B
2

[

˜

h

?(1)

1,⇡

˜

h

?(1)

1L,p

] , (2.10)

F

sin�S

UT

(x

⇡

, x

p

, q

T

, Q

2

) = M

p

B
1

[

˜

f

1,⇡

˜

f

?(1)

1T,p

] , (2.11)

F

sin(2���S)

UT

(x

⇡

, x

p

, q

T

, Q

2

) = �M

⇡

B
1

[

˜

h

?(1)

1,⇡

˜

h

1,p

] , (2.12)

F

sin(2�+�S)

UT

(x

⇡

, x

p

, q

T

, Q

2

) = �
M

⇡

M

2

p

4

B
3

[

˜

h

?(1)

1,⇡

˜

h

?(2)

1T,p

] , (2.13)

where the b

T

space TMD moments [116] are

˜

f

(n)

(x

h

, b

T

, Q,Q

2

) = (�1)

n

n!

✓
2

M

2

h

@

@b

2

T

◆
n

˜

f(x

h

, b

T

, Q,Q

2

) . (2.14)

These moments have the important feature,

lim

bT!0

˜

f

(n)

(x

h

, b

T

, Q,Q

2

) = f

(n)

(x

h

, Q) , (2.15)

where f

(n) are conventional transverse moments of TMDs [5] defined as

f

(n)

(x

h

, Q) =

Z
d

2k
Th

✓
k2

Th

2M

2

h

◆
n

f(x

h

,k2

Th

, Q,Q

2

) , (2.16)

and h = ⇡, p correspond to pion and proton TMDs, respectively. The evolution factor S(b
T

, Q

0

, Q)

in Eq. (2.7), which results from solving the CSS evolution equation and the renormalization group
equations for the rapidity dependence of the TMDs and for the soft factor [2, 19], is given by

S(b

T

, Q

0

, Q) = � ˜

K(b

T

, Q

0

) ln

Q

2

Q

2

0

+

Z
Q

Q0

dµ̄

µ̄


�

K

(↵

s

(µ̄)) ln

Q

2

µ̄

2

� 2�

i

(↵

s

(µ̄); 1)

�
, (2.17)

where ˜

K is the Collins-Soper evolution kernel, and the anomalous dimensions are �

i

(↵

s

(µ̄); 1) and
�

K

(↵

s

(µ̄)) [21].
Since the integral in Eq. (2.7) extends over all b

T

, one cannot avoid using ˜

K in the CS evolution
factor (2.17) in the non-perturbative large b

T

region. In order to combine the perturbative and non-
perturbative regions, we use the b⇤ prescription [1], namely,

b⇤ =

b

Tp
1 + b

2

T

/b

2

max

, (2.18)

which introduces a smooth upper cutoff b

max

in the transverse distance.
Then, the perturbative part of ˜

K is defined by replacing b

T

by b⇤ and the non-perturbative
part is defined by the difference ˜

K(b⇤, µ)� ˜

K(b

T

, µ) = g

K

(b

T

; b

max

) [21]. Furthermore to combine
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where S is the evolution factor

Based on the b

T

space formalism given in Ref. [116] we write down the rest of the twist-2
structure functions. We use the convenient notation from Ref. [117],
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which leads to the following expressions for the twist-2 structure functions,
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where the b
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and h = ⇡, p correspond to pion and proton TMDs, respectively. The evolution factor S(b
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where C
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= 4/3, C
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= 1/2 and n
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is the number of active flavors. We will numerically
calculate the integral in Eq. (2.17) using the two-loop result for the strong coupling constant, tuned
to the world average [125] ↵
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which interpolates smoothly between the small and large-b
T

regions, where at small b
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it approxi-
mates a power series in b

2

T

, while at large b
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the resulting value of ˜
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) to match the non perturbative behavior of g
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in Refs. [94, 95] to describe the polarized SIDIS data and in Ref. [93] to describe unpolarized SIDIS,
Drell-Yan and weak boson production data.

2.3 Input for TMDs and choice of the initial scale Q0

We will utilize the following parametrizations [39] for TMDs at the initial scale Q

0

:

f

a

h

(x

h

,k
Th

, Q

0

, Q

2

0

) = f

a

h

(x

h

, Q

0

)

e

�k2
Th/hk

2
Thifh

⇡ hk2
Th

i
fh

, f

a

h

= f

a

1,p

, f

a

1,⇡

, h

a

1,p

,

f

a

h

(x

h

,k
Th

, Q

0

, Q

2

0

) = f

(1)a

h

(x

h

, Q

0

)

2M

2

h

⇡hk2
Th

i2
fh

e

�k2
Th/hk

2
Thifh

, f

a

h

= f

?a

1T,p

, h

?a

1,p

, h

?a

1,⇡

, h

?a

1L,p

,

f

a

h

(x

h

,k
Th

, Q

0

, Q

2

0

) = f

(2)a

h

(x

h

, Q

0

)

2M

4

h

⇡hk2
Th

i3
fh

e

�k2
Th/hk

2
Thifh

, f

a

h

= h

?a

1T,p

, (2.25)

– 7 –

the perturbative and non-perturbative regions using the fixed scale evolution, it is optimal to use
the renormalization group running scheme for ˜

K in Eq. (2.17), evolved from the fixed scale Q

0

, i.e.

˜

K(b

T

, Q

0

) =

˜

K(b⇤, µb⇤)�
Z

Q0

µb⇤

dµ̄

µ̄

�

K

(↵

s

(µ̄))� g

K

(b

T

; b

max

) , (2.19)

where µ

b⇤ is now chosen to become a hard scale,

µ

b⇤ ⌘ 2e

��E

b⇤
. (2.20)

Now Eq. (2.17) reads [21]

S(b

T

, b⇤, Q0

, Q) =

 
g

K

(b

T

; b

max

)� ˜

K(b⇤;µb⇤) +

Z
Q0

µb⇤

dµ̄

µ̄

�

K

(↵

s

(µ̄))

!
ln

Q

2

Q

2

0

+

Z
Q

Q0

dµ̄

µ̄


�

K

(↵

s

(µ̄)) ln

Q

2

µ̄

2

� 2�

i

(↵

s

(µ̄); 1)

�
. (2.21)

The anomalous dimensions can be expanded as perturbative series,
�

i

=

P1
n=1

�

(n)

i

(↵

s

/⇡)

n, and �

K

=

P1
n=1

�

(n)

K

(↵

s

/⇡)

n. In our calculations we employ them to
NLL accuracy; �(1)

K

, �(2)

K

and �

(1)

i

. They are spin-independent [1, 19, 21, 29, 118–122], and given by

�

(1)

K

= 2C

F

, �

(2)

K

= C

F


C

A

✓
67

18

� ⇡

2

6

◆
� 10

9

T

F

n

f

�
, �

(1)

i

=

3

2

C

F

. (2.22)

The NLL two-loop contribution for ˜

K [123, 124], valid at small values of b
T

, is

˜

K(b⇤;µb⇤) =

C

F

2

✓
↵

s

(µ

b⇤)

⇡

◆
2

✓
7

2

⇣

3

� 101

27

◆
C

A

+

28

27

T

F

n

f

�
, (2.23)

where C
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is the number of active flavors. We will numerically
calculate the integral in Eq. (2.17) using the two-loop result for the strong coupling constant, tuned
to the world average [125] ↵
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which interpolates smoothly between the small and large-b
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2

T

, while at large b
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the resulting value of ˜
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used
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Drell-Yan and weak boson production data.
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which interpolates smoothly between the small and large-b
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the resulting value of ˜
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choose g
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which interpolates smoothly between the small and large-b
T

regions, where at small b
T

it approxi-
mates a power series in b

2

T

, while at large b

T

the resulting value of ˜

K goes to a constant [21]. We
choose g

0

(b

max

) = 0.84 and b

max

= 1 (GeV

�1

) to match the non perturbative behavior of g
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in Refs. [94, 95] to describe the polarized SIDIS data and in Ref. [93] to describe unpolarized SIDIS,
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Collins-Soper perturbative, valid at small-b
gK is a non perturbative function for large-b
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Models, < 1 GeV

Experimental scale Q > 5 GeV

Initial scale, Q0 = 1.5 GeV typical for TMD phenomenology 

DGLAP-type of TMD moments 

NLL, TMD evolution
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Sivers function

Transversity

Boer-Mulders 

Pretzelosity

Kotzinian-Mulders

Light-front models are based on the decomposition of the hadron states in the Fock space
constructed in the framework of light-front quantization. The hadron states are then obtained as
a superposition of partonic quantum states, each one multiplied by an N -parton light-front wave
function which gives the probability amplitude to find the corresponding N -parton state in the
hadron. In the LFCQM the light-front Fock expansion is truncated to the leading component given
by the valence 3q and qq̄ contribution in the proton and pion, respectively. The light-front wave
functions can be further decomposed in terms of light-front wave amplitudes that are eigenstates of
the total parton orbital angular momentum. The TMDs can then be expressed as overlap of light-
front wave amplitudes with different orbital angular momentum [54] which makes very transparent
the spin-orbit correlations encoded in the different TMDs [54, 55, 57–59]. To model the 3q light-
front wave function of the proton, the phenomenological Ansatz of Ref. [140] was used, describing
the quark-momentum dependence through a rational analytical expression with parameters fitted
to the anomalous magnetic moment of the proton and neutron [140, 141]. For the pion, the qq̄

light-front wave function of Ref. [142] was used, with the quark-momentum dependent part given
by a Gaussian function with parameters fitted to the pion charge radius and decay constant.

Spectator models are based on a field theoretical description of deep inelastic scattering in a
relativistic impulse approximation. In this parton model-like factorization, the cross section for
deep inelastic scattering processes can be expressed in terms of a Born cross section and quark
correlation functions [143]. In this framework, the quark correlation functions are hadronic matrix
elements expanded in Dirac and flavor structure multiplying form factors. The essence of the SPMs
is to calculate the matrix elements of the quark correlation function by the introduction of effective
hadron-spectator-quark (e.g. nucleon-diquark-quark) vertices [49, 50, 144] which in turn enable one
to model essential non-perturbative flavor and spin structure of hadrons.

The SPMs allow one to model the dynamics of universality and process dependence through
studying the gauge-link, and phase content of TMDs [145–151]. In turn systematic phenomenolog-
ical estimates for parton distributions and fragmentation functions for both “T-even” and “T-odd”
TMDs have been carried out [50, 52, 146, 147, 152, 153]. In regard to the latter, it is in this frame-
work that the first calculations of the Sivers and Boer-Mulders functions of the nucleon were carried
out [145–147] and shown on general grounds to contribute to semi-inclusive processes at leading
power in the hard scale. Later the Boer-Mulders function of the pion was calculated in Ref. [51].
The model parameters are determined by comparing the SPM results for fu

1,p

(x) and f

d

1,p

(x) to the
leading order (LO) low-scale (µ2

0

= 0.26 GeV2) GRV98 parametrization [25].
The proton TMDs for u- and d- quarks are given by linear combinations of contributions from

axial vector and scalar diquarks assuming SU(2) flavor symmetry [49, 50].
We choose the scale Q

2

0

= 2.4GeV

2 as the initial scale for the CSS evolution. The evolution
effects between the initial model scale µ

0

⇠ 0.5GeV and Q

0

cannot be determined exactly in the
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Figure 3. Left: f

ū
1,⇡� from LFCQM [59] and spectator model [51] LO-evolved to the scale Q

0

in
comparison to MRSS parametrization [41]. Right: Predictions from LFCQM [59] and SPM [51] for the pion
Boer-Mulders function (with the sign for DY) for which no parametrizations are currently available.
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Figure 4. The proton TMDs of u and d quarks in LFCQM [54, 57, 58] and SPM [50] at the scale Q

0

compared to phenomenological fits for f

1,p from MSTW2008(LO) [26], f?(1)a
1T,p from JAM20 [38] and Torino

[34], ha
1,p from JAM20 [38] and Torino [35], h?(1)a

1,p from BMP10 [36], h?(2)a
1T,p from LP15 [37]. Sivers and

Boer-Mulders TMDs are shown with the sign for DY process. The error bands show the 1-� uncertainty of
the JAM20 extractions [38].
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Light-front models are based on the decomposition of the hadron states in the Fock space
constructed in the framework of light-front quantization. The hadron states are then obtained as
a superposition of partonic quantum states, each one multiplied by an N -parton light-front wave
function which gives the probability amplitude to find the corresponding N -parton state in the
hadron. In the LFCQM the light-front Fock expansion is truncated to the leading component given
by the valence 3q and qq̄ contribution in the proton and pion, respectively. The light-front wave
functions can be further decomposed in terms of light-front wave amplitudes that are eigenstates of
the total parton orbital angular momentum. The TMDs can then be expressed as overlap of light-
front wave amplitudes with different orbital angular momentum [54] which makes very transparent
the spin-orbit correlations encoded in the different TMDs [54, 55, 57–59]. To model the 3q light-
front wave function of the proton, the phenomenological Ansatz of Ref. [140] was used, describing
the quark-momentum dependence through a rational analytical expression with parameters fitted
to the anomalous magnetic moment of the proton and neutron [140, 141]. For the pion, the qq̄

light-front wave function of Ref. [142] was used, with the quark-momentum dependent part given
by a Gaussian function with parameters fitted to the pion charge radius and decay constant.

Spectator models are based on a field theoretical description of deep inelastic scattering in a
relativistic impulse approximation. In this parton model-like factorization, the cross section for
deep inelastic scattering processes can be expressed in terms of a Born cross section and quark
correlation functions [143]. In this framework, the quark correlation functions are hadronic matrix
elements expanded in Dirac and flavor structure multiplying form factors. The essence of the SPMs
is to calculate the matrix elements of the quark correlation function by the introduction of effective
hadron-spectator-quark (e.g. nucleon-diquark-quark) vertices [49, 50, 144] which in turn enable one
to model essential non-perturbative flavor and spin structure of hadrons.

The SPMs allow one to model the dynamics of universality and process dependence through
studying the gauge-link, and phase content of TMDs [145–151]. In turn systematic phenomenolog-
ical estimates for parton distributions and fragmentation functions for both “T-even” and “T-odd”
TMDs have been carried out [50, 52, 146, 147, 152, 153]. In regard to the latter, it is in this frame-
work that the first calculations of the Sivers and Boer-Mulders functions of the nucleon were carried
out [145–147] and shown on general grounds to contribute to semi-inclusive processes at leading
power in the hard scale. Later the Boer-Mulders function of the pion was calculated in Ref. [51].
The model parameters are determined by comparing the SPM results for fu

1,p

(x) and f

d

1,p

(x) to the
leading order (LO) low-scale (µ2

0

= 0.26 GeV2) GRV98 parametrization [25].
The proton TMDs for u- and d- quarks are given by linear combinations of contributions from

axial vector and scalar diquarks assuming SU(2) flavor symmetry [49, 50].
We choose the scale Q

2

0

= 2.4GeV

2 as the initial scale for the CSS evolution. The evolution
effects between the initial model scale µ

0

⇠ 0.5GeV and Q

0

cannot be determined exactly in the
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Figure 3. Left: f

ū
1,⇡� from LFCQM [59] and spectator model [51] LO-evolved to the scale Q

0

in
comparison to MRSS parametrization [41]. Right: Predictions from LFCQM [59] and SPM [51] for the pion
Boer-Mulders function (with the sign for DY) for which no parametrizations are currently available.
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Pion Boer-Mulders x Transversity
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Pion Boer-Mulders x Pretzelosity

COMPASS data: Aghasyan et al PRL 119, 112002 (2017) 
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Pion Boer-Mulders x Boer-Mulders
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We have studied pion induced polarized Drell-Yan process 
within TMD factorization at NLL precision
Results, including model and phenomenological input, are 
compared to the existing data from COMPASS experiment 
and show a good agreement with the data
Predictions are given for the future measurements


