Forward trijet production at LHC

Andreas van Hameren

Institute of Nuclear Physics Polish Academy of Sciences Kraków
in collaboration with
Marcin Bury, Piotr Kotko and Krzysztof Kutak
presented at
Resummation, Evolution, Factorization 2020
11-12-2020
This research was supported by grant agreement No. 824093 with STR NG-2 2

Explicit k_{T}-employing factorization

TMD factorization

- holds at leading power in k_{T} / μ
- on-shell parton-level matrix elements
- Transverse Momentum Dependent PDFs, evolve via the Collins-Soper-Sterman equations, re-sum large logs of k_{T} / μ

High energy factorization

$$
d \sigma_{h h}=\sum_{a, b} \int d x_{1} \frac{d^{2} k_{T 1}}{\pi} \int d x_{2} \frac{d^{2} k_{T 2}}{\pi} \mathcal{F}_{a}\left(x_{1}, k_{T 1}\right) \mathcal{F}_{b}\left(x_{2}, k_{T 2}\right) d \sigma_{a b}\left(x_{1}, k_{T 1}, x_{2}, k_{T 2}\right)
$$

- focus on small- x, not neglecting powers of k_{T} / μ
- off-shell parton-level matrix elements
- Transvers Momentum Dependent, or un-integrated, PDFs, evolve to resum logs of $1 / x$, e.g. with BFKL or CCFM equations, or their non-linear extensions,

QCD evolution, dilute vs. dense, forward jets

A dilute system carries a few high- x partons contributing to the hard scattering.

A dense system carries many low-x partons.

At high density, gluons are imagined to undergo recombination, and to saturate.

This is modeled with non-linear evolution equations, involving explicit non-vanishing k_{T}.

DENSE $x \sim 10^{-4}$

Saturation implies the turnover of the gluon density, stopping it from growing indefinitely for small χ.

Forward jets have large rapidities, and trigger events in which partons from the nucleus have small x.

art by Piotr Kotko

pA (dilute-dense) collisions within CGC

$$
\begin{aligned}
& \frac{d \sigma_{q A \rightarrow 2 j}}{d^{3} p_{1} d^{3} p_{2}} \sim \int \frac{d^{2} x}{(2 \pi)^{2}} \frac{d^{2} x^{\prime}}{(2 \pi)^{2}} \frac{d^{2} y}{(2 \pi)^{2}} \frac{d^{2} y^{\prime}}{(2 \pi)^{2}} e^{-i \vec{p}_{1^{\prime}}\left(\vec{x}_{T}-\vec{x}_{T}^{\prime}\right)} e^{-i \vec{p}_{T 2^{2}}\left(\vec{y}_{T}-\vec{y}_{T}^{\prime}\right)} \\
& \times \psi_{z}^{*}\left(\vec{x}_{T}^{\prime}-\vec{y}_{T}^{\prime}\right) \psi_{z}\left(\vec{x}_{T}-\vec{y}_{T}\right) \ll \text { QUARK WAVE FUNCTION } \\
& \times\left\{S_{x}^{(6)}\left(\vec{y}_{T}, \vec{x}_{T}, \vec{y}_{T}^{\prime}, \vec{x}_{T}^{\prime}\right)-S_{x}^{(4)}\left(\vec{y}_{T}, \vec{x}_{T}, \bar{z} \vec{y}_{T}^{\prime}+z \vec{x}_{T}^{\prime}\right)\right. \\
& \left.-S_{x}^{(4)}\left(\bar{z} \vec{y}_{T}+z \vec{x}_{T}, \vec{y}_{T}^{\prime}, \vec{x}_{T}^{\prime}\right)-S_{x}^{(2)}\left(\bar{z} \vec{y}_{T}+z \vec{x}_{T}, \bar{z} \vec{y}_{T}^{\prime}+z \vec{x}_{T}^{\prime}\right)\right\} \\
& S_{x}^{(2)}\left(\vec{y}_{T}, \vec{x}_{T}\right)=\frac{1}{N_{c}}\left\langle\operatorname{Tr} U\left(\vec{y}_{T}\right) U^{\dagger}\left(\vec{x}_{T}\right)\right\rangle_{x} \\
& \text { CORRELATORS OF } \\
& S_{x}^{(4)}\left(\vec{z}_{T}, \vec{y}_{T}, \vec{x}_{T}\right)=\frac{1}{2 C_{F} N_{c}}\left\langle\operatorname{Tr}\left[U\left(\vec{z}_{T}\right) U^{\dagger}\left(\vec{y}_{T}\right)\right] \operatorname{Tr}\left[U\left(\vec{y}_{T}\right) U^{\dagger}\left(\vec{x}_{T}\right)\right]\right\rangle_{x} \\
& \text { etc... } \\
& -S_{x}^{(2)}\left(\vec{z}_{T}, \vec{x}_{T}\right) \\
& U\left(\vec{x}_{T}\right)=\mathscr{P} \exp \left\{i g \int_{-\infty}^{+\infty} d x^{+} A_{a}^{-}\left(x^{+}, \vec{x}_{T}\right) t^{a}\right\} \\
& \text { [C. Marquet, 2007] }
\end{aligned}
$$

COLOR FIELD
OF THE NUCLEUS

[L. McLerran, R. Venugopalan, 1993]

Large-x partons - the color source for wee partons:
$\left(D_{\mu} F^{\mu \nu}\right)_{a}\left(x^{-}, \vec{x}_{T}\right)=\delta^{\nu+} \rho_{a}\left(\vec{x}_{T}\right) \delta\left(x^{-}\right)$
RANDOM DISTRIBUTION
OF COLOR SOURCES
AVERAGE OVER COLOR SOURCES
GAUSSIAN FUNCTIONAL B-JIMWLK EVOLUTION IN X
[Balitsky-Jalilian-Marian-lancu-McLerran -Weigert-Leonidov-Kovner, 1996-2002]

CGC \& TMD Leading twist study

FORWARD DIJET PRODUCTION IN CGC
[F. Dominguez, C. Marquet, B. Xiao, F. Yuan, 2011]

LEADING POWER LIMIT

Equivalence of leading power CGC and TMD 'factorization'
was recently shown for dijet+photon process.
[T. Altinoluk, R. Boussarie, C. Marquet, P. Taels, 2018]

ON-SHELL
HARD FACTORS

TMD GLUON DISTRIBUTIONS (SMALL-X LIMIT)

SMALL-X LIMIT OF TMD GLUON DISTRIBUTIONS $\mathscr{F}_{\text {ag }}^{(i)}\left(x, k_{T}\right) \sim \int \frac{d \xi^{+} d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i x P^{--} \xi^{+}-i \vec{k}_{T^{\prime}} \cdot \vec{\xi}_{T}}\langle P| \operatorname{Tr}\left[\hat{F}^{i-}\left(\xi^{+}, \vec{\xi}_{T}, \xi^{-}=0\right) \mathscr{U}_{C_{1}} \hat{F}^{i-}(0) \mathcal{U}_{C_{2}}\right]|P\rangle$

DEPENDENCE ONX
IS ONLY VIA THE
SMALL-X EVOLUTION

For example:

$\mathscr{F}_{q g}^{(1)} \sim \int \frac{d^{2} x_{T} d^{2} y_{T}}{(2 \pi)^{4}} k_{T}^{2} e^{-i \vec{k}_{T^{\prime}}\left(\vec{x}_{T^{-}} \vec{y}_{T}\right)}\left\langle\operatorname{Tr}\left[U\left(\vec{x}_{T}\right) U^{\dagger}\left(\vec{y}_{T}\right)\right]\right\rangle_{x}$

Intensively studied:
[D. Kharzeev, Y. Kovchegov, K. Tuchin, 2003]
[B. Xiao, F. Yuan, 2010]
[F. Dominguez, C. Marquet, B. Xiao, F. Yuan, 2011]
[A. Metz, J. Zhou, 2011]
[E. Akcakaya, A. Schafer, J. Zhou, 2012]
[C. Marquet, E. Petreska, C. Roiesnel, 2016]
[I. Balitsky, A. Tarasov, 2015, 2016]
[D. Boer, P. Mulders, J. Zhou, Y. Zhou, 2017]
[C. Marquet, C. Roiesnel, P. Taels, 2018]
[Y. Kovchegov, D. Pitonyak, M. Sievert, 2017,2018]
[T. Altinoluk, R. Boussarie, 2019]

Small-x Improved TMD Factorization (ITMD)

Factorization formula for forward dijets in p-p and p-A collisions
[PK, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, 2015]

$$
\frac{d \sigma_{p A \rightarrow 2 j+X}}{d y_{1} d y_{2} d^{2} p_{T 1} d^{2} p_{T 2}} \sim \sum_{a, c, d} f_{a / p}\left(x_{1}, \mu\right) \sum_{i=1,2} K_{a g \rightarrow c d}^{(i)}\left(k_{T}\right) \Phi_{a g \rightarrow c d}^{(i)}\left(x_{2}, k_{T}\right)
$$

RAPIDITY TRANSVERSE MOMENTA
$x_{2} \ll X_{1} \quad\left|\vec{P}_{T_{1}}+\vec{p}_{T 2}\right|=k_{T}$
COLLINEAR GAUGE PROTON PDF INVARIANT OFF-SHELL TMD GLUON DISTRIBUTIONS AT SMALL-X HARD FACTORS

TWO PER CHANNEL $\left(g^{*} q \rightarrow g q, g^{k} g \rightarrow g g, g^{*} g \rightarrow q \bar{q}\right)$
$\Lambda_{\mathrm{QCD}} \ll Q_{s} \ll P_{T}$
SATURATION SCALE

ITMD* factorization for more than 2 jets

We want to establish a similar factorization for more than 2 jets.
However, the ITMD formalism does not account for linearly polarized gluons in unpolarized target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded to be present from 3-jet formulae in CGC (Iancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant offshell hard scattering amplitudes

$$
\sum_{i, j} \mathcal{M}_{i}^{*}\left(\frac{k_{T}^{(i)} k_{T}^{(j)}}{2\left|\vec{k}_{T}\right|^{2}}(\mathcal{F}+\mathcal{H})+\frac{q_{T}^{(i)} q_{T}^{(j)}}{2\left|\vec{q}_{T}\right|^{2}}(\mathcal{F}-\mathcal{H})\right) \mathcal{M}_{j} \quad, \quad \vec{q}_{T} \cdot \vec{k}_{T}=0
$$

$\sum_{i} \mathcal{M}_{i} k_{T}^{(i)}$ is gauge invariant while $\sum_{i} \mathcal{M}_{i} \mathfrak{q}_{T}^{(i)}$ is not. For dijets, it happens that $\mathcal{F}=\mathcal{H}$.
In the following only the manifestly gauge-invariant contribution is included, hence the designation ITMD*.

ITMD* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$
d \sigma=\sum_{a} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} a \rightarrow n} \frac{1}{\text { flux }_{g a}} \mathcal{F}_{g}\left(x_{1}, k_{T}, \mu\right) f_{a}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{N}_{g^{*} a \rightarrow n}^{(\text {color })}\right|^{2}
$$

ITMD* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$
d \sigma=\sum_{a} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} a \rightarrow n} \frac{1}{\text { flux }} \mathcal{F}_{g a}\left(x_{1}, k_{T}, \mu\right) f_{a}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{M}_{9^{*} a \rightarrow n}^{(\text {color })}\right|^{2}
$$

Color connection representation: turn adjoint gluon indices \mathfrak{a} into fundamental indices $\mathfrak{i}, \mathfrak{j}$

$$
\begin{aligned}
& \tilde{\mathcal{M}}{ }_{j}{ }_{j}^{i \cdots} \equiv \mathcal{M}{ }^{\cdots \cdots{ }^{\cdots}\left(\sqrt{2} T^{a}\right)_{j}^{i}}
\end{aligned}
$$

ITMD* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$
d \sigma=\sum_{a} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} a \rightarrow n} \frac{1}{\text { flux }} \mathcal{F}_{g a}\left(x_{1}, k_{T}, \mu\right) f_{a}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{M}_{9^{*} a \rightarrow n}^{(\text {color) }}\right|^{2}
$$

Color connection representation: turn adjoint gluon indices a into fundamental indices $\mathfrak{i}, \mathfrak{j}$

$$
\begin{aligned}
& \tilde{\mathcal{M}}^{\tilde{W}}{ }_{j}^{i \ldots} \equiv \mathcal{M}{ }^{\cdots \cdots}{ }^{\cdots}\left(\sqrt{2} \mathrm{~T}^{a}\right)_{j}^{i} \\
& \left.\sum_{\text {color }}\left|\mathcal{H}^{(\text {color })}\right|^{2}=\sum_{i_{1}, i_{2}, \ldots, i_{n+2}} \sum_{j_{1}, j_{2}, \ldots, j_{n+2}}\left(\tilde{\mathcal{M}}_{j 1}^{i_{1} j_{2} \ldots, i_{n+2}}\right)^{i_{1} \ldots i_{n}}\right)^{*}\left(\tilde{\mathcal{M}}_{j_{1} j_{2} \ldots, j_{n+2}}^{i_{1} i_{2} \ldots i_{n+2}}\right)
\end{aligned}
$$

Decomposition into partial amplitudes (Kanaki, Papadopoulos 2000; Maltoni, Paul, Stelzer, Willenbrock 2003)

$$
\tilde{\mathcal{M}}_{j_{1} 12 \ldots . . . i_{n+2}}^{i_{1} i_{2}, i_{n+2}}=\sum_{\sigma \in S_{n+2}} \delta_{j_{\sigma(1)}}^{i_{1}} \delta_{j_{\sigma(2)}}^{i_{2}} \cdots \delta_{j_{\sigma(n+2)}}^{i_{n+2}} \mathcal{A}_{\sigma}
$$

ITMD* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$
d \sigma=\sum_{a} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} a \rightarrow n} \frac{1}{\text { flux }_{g a}} \mathcal{F}_{g}\left(x_{1}, k_{T}, \mu\right) f_{a}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{M}_{9^{*} a \rightarrow n}^{(\text {color })}\right|^{2}
$$

Color connection representation: turn adjoint gluon indices \mathfrak{a} into fundamental indices $\mathfrak{i}, \mathfrak{j}$

$$
\begin{aligned}
& \tilde{\mathcal{M}}^{\cdots \cdots}{ }_{j}^{i \cdots} \equiv \mathcal{M}{ }^{\cdots a \cdots}\left(\sqrt{2} \mathrm{~T}^{\mathrm{a}}\right)_{j}^{i} \\
& \left.\sum_{\text {color }}\left|\mathcal{H}^{(\text {color })}\right|^{2}=\sum_{i_{1}, i_{2}, \ldots, i_{n+2}} \sum_{j_{1}, j_{2}, \ldots, j_{n+2}}\left(\tilde{\mathcal{M}}_{j 1}^{i_{1} j_{2} \ldots, i_{n+2}}\right)^{i_{1} \ldots i_{n}}\right)^{*}\left(\tilde{\mathcal{M}}_{j_{1} j_{2} \ldots, j_{n+2}}^{i_{1} i_{2} \ldots i_{n+2}}\right)
\end{aligned}
$$

Decomposition into partial amplitudes (Kanaki, Papadopoulos 2000; Maltoni, Paul, Stelzer, Willenbrock 2003)

$$
\tilde{\mathcal{M}}_{j_{1} i_{2} \ldots . . . i_{n+2}}^{i_{1} i_{n+2}}=\sum_{\sigma \in \mathrm{S}_{n+2}} \delta_{j_{\sigma(1)}}^{i_{1}} \delta_{\mathrm{j}_{\sigma(2)}}^{i_{2}} \cdots \delta_{j_{\sigma(n+2)}}^{i_{n+2}} \mathcal{A}_{\sigma}
$$

Color sum in terms of a color matrix

$$
\begin{gathered}
\sum_{\text {color }}\left|\mathcal{N}^{(\text {coolor })}\right|^{2}=\sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_{\sigma}^{*} \mathcal{C}_{\sigma \tau} \mathcal{A}_{\tau} \\
\mathcal{C}_{\sigma \tau}=\sum_{i_{1}, i_{2}, \ldots, i_{n+2}} \sum_{\mathfrak{j}_{1}, j_{2}, \ldots, j_{n+2}} \delta_{j_{\sigma(1)}}^{i_{1}} \delta_{j_{\sigma(2)}}^{i_{2}} \cdots \delta_{j_{\sigma(n+2)}}^{i_{n+2}} \delta_{j_{\tau(1)}}^{i_{1}} \delta_{j_{\tau(2)}}^{i_{2}} \cdots \delta_{j_{\tau(n+2)}}^{i_{n+2}}=N_{c}^{\lambda(\sigma, \tau)}
\end{gathered}
$$

ITMD* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$
\begin{aligned}
d \sigma= & \sum_{a} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} a \rightarrow n} \frac{1}{\text { flux }_{g a}} \mathcal{F}_{g}\left(x_{1}, k_{T}, \mu\right) f_{a}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{M}_{g^{*} a \rightarrow n}^{(\text {color })}\right|^{2} \\
& \mathcal{F}_{g} \sum_{\text {color }}\left|\mathcal{M}^{\text {(color })}\right|^{2}=\mathcal{F}_{g} \sum_{i_{1}, i_{2}, \ldots, i_{n+2}} \sum_{j_{1}, j_{2}, \ldots, j_{n+2}}\left(\tilde{\mathcal{M}}_{j_{1} j_{2} \ldots j_{n+2}}^{i_{1} i_{2} \ldots i_{n+2}}\right)^{*}\left(\tilde{\mathcal{M}}_{j_{1} j_{2} \ldots j_{n+2}}^{i_{1} i_{2} \ldots i_{n+2}}\right)
\end{aligned}
$$

ITMD* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$
d \sigma=\sum_{a} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} a \rightarrow n} \frac{1}{\text { flux }_{g a}} \mathcal{F}_{g}\left(x_{1}, k_{T}, \mu\right) f_{a}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{M}_{9^{*} a \rightarrow n}^{(\text {color })}\right|^{2}
$$

ITMD* formula: replace

$$
\mathcal{F}_{g} \sum_{\text {color }}\left|\mathcal{M}^{(\text {color })}\right|^{2}=\mathcal{F}_{g} \sum_{i_{1}, i_{2}, \ldots, i_{n+2}} \sum_{j_{1}, j_{2}, \ldots, j_{n+2}}\left(\tilde{\mathcal{M}}_{j_{1} j_{2} \ldots j_{n+2}}^{i_{1} i_{2} \ldots i_{n+2}}\right)^{*}\left(\tilde{\mathcal{M}}_{j_{1} j_{2} \ldots, \ldots, j_{n+2}}^{i_{1} i_{2} \ldots i_{n+2}}\right)
$$

with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

$$
\begin{aligned}
& \times 2 \int \frac{\mathrm{~d}^{4} \xi}{(2 \pi)^{3} \mathrm{P}^{+}} \delta\left(\xi_{+}\right) e^{i k \cdot \xi}\langle P|\left(\hat{F}^{+}(\xi)\right)_{i_{1}}^{\mathrm{j}_{1}}\left(\hat{\mathrm{~F}}^{+}(0)\right)_{\overline{1}_{1}}^{\bar{j}_{1}}\left(\mathcal{U}^{\left[\lambda_{2}\right]}\right)_{i_{2} \bar{\imath}_{2}}\left(U^{\left[\lambda_{2}\right] \dagger}\right)^{\mathrm{j}_{2} \bar{\jmath}_{2}} \cdots \\
& \cdots\left(U^{\left[\lambda_{n+2}\right]}\right)_{\mathfrak{i}_{n+2} \bar{彳}_{n+2}}\left(U^{\left[\lambda_{n+2}\right] \dagger}\right)^{j_{n+2} \bar{\jmath}_{n+2}}|p\rangle
\end{aligned}
$$

where P is the light-like momentum of the hadron (with $P^{-}=0$), and $k^{\mu}=x P^{\mu}+k_{T}^{\mu}$, where \hat{F} is the field strenght, and $\mathcal{U}^{ \pm}$is a Wilson line from 0 to ξ via a "staple-like detour" to $\pm \infty$ depending on the type and state (initial/final) of parton.

ITMD* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$
d \sigma=\sum_{a} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} a \rightarrow n} \frac{1}{\text { flux } g_{g a}} \mathcal{F}_{g}\left(x_{1}, k_{T}, \mu\right) f_{a}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{M}_{g^{*} a \rightarrow n}^{(\text {color })}\right|^{2}
$$

ITMD* formula: replace

$$
\mathcal{F}_{9} \sum_{\text {color }}\left|\mathcal{M}^{(\text {color })}\right|^{2}=\mathcal{F}_{g} \sum_{i_{1}, i_{2}, \ldots, i_{n+2}} \sum_{j_{1}, j_{2}, \ldots, j_{n+2}}\left(\tilde{\mathcal{M}}_{j_{1} i_{2} \ldots \ldots j_{n+2}}^{i_{1} i_{2} \ldots i_{n+2}}\right)^{*}\left(\tilde{\mathcal{M}}_{j_{1} i_{2} \ldots, i_{n+2}}^{i_{1} i_{2}, i_{n+2}}\right)
$$

with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

$$
\begin{aligned}
& \left(N_{c}^{2}-1\right) \sum_{i_{1}, \ldots, i_{n}} \sum_{j_{1}, \ldots, j_{n+2}} \sum_{\bar{i}_{1}, \ldots, \bar{i}_{n+2}} \sum_{\bar{j}_{1}, \ldots, \bar{\jmath}_{n+2}}\left(\tilde{\mathcal{M}}_{j_{1} j_{2} \cdots j_{n+2}}^{i_{1} i_{2} \ldots i_{n+2}}\right)^{*}\left(\tilde{\mathcal{M}}_{\bar{j}_{1} \overline{j_{2}} \ldots \bar{\jmath}_{n}+2}^{\bar{i}_{2} \cdots \bar{i}_{n+2}}\right) \\
& \times 2 \int \frac{\mathrm{~d}^{4} \xi}{(2 \pi)^{3} \mathrm{P}^{+}} \delta\left(\xi_{+}\right) e^{\mathrm{i} k \cdot \xi}\langle P|\left(\hat{\mathrm{F}}^{+}(\xi)\right)_{\mathrm{i}_{1}}^{\mathrm{j}_{1}}\left(\hat{\mathrm{~F}}^{+}(0)\right)_{\overline{\bar{\imath}}_{1}}^{\overline{\overline{1}}_{1}}\left(U^{\left[\lambda_{2}\right]}\right)_{\mathrm{i}_{2} \bar{\imath}_{2}}\left(U^{\left[\lambda_{2}\right] \dagger}\right)^{\mathrm{j}_{2} \overline{\bar{T}}_{2}} \ldots \\
& \cdots\left(U^{\left[\lambda_{n+2}\right]}\right)_{\mathfrak{i}_{n+2} \bar{彳}_{n+2}}\left(U^{\left[\lambda_{n+2}\right] \dagger}\right)^{j_{n+2} \bar{\jmath}_{n+2}}|p\rangle
\end{aligned}
$$

where P is where \hat{F} is and $\mathcal{U}^{ \pm}$is type and st
$\tilde{\mathcal{M}}_{j_{1} j_{2} \ldots j_{n+2}}^{i_{1} i_{2}, i_{n+2}}=\sum_{\sigma \in S_{n+2}} \delta_{j_{\sigma(1)}}^{i_{1}} \delta_{j_{\sigma(2)}}^{i_{2}} \cdots \delta_{j_{\sigma(n+2)}}^{i_{n+2}} \mathcal{A}_{\sigma} \quad$ ping on th

ITMD* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$
d \sigma=\sum_{a} \int d x_{1} d^{2} k_{T} \int d x_{2} d \Phi_{g^{*} a \rightarrow n} \frac{1}{\text { flux }_{g a}} \mathcal{F}_{g}\left(x_{1}, k_{T}, \mu\right) f_{a}\left(x_{2}, \mu\right) \sum_{\text {color }}\left|\mathcal{N}_{g^{*} a \rightarrow n}^{(\text {color })}\right|^{2}
$$

ITMD* formula: replace

$$
\mathcal{F}_{\mathrm{g}} \sum_{\text {color }}\left|\mathcal{N}^{(\text {color })}\right|^{2}=\mathcal{F}_{g} \sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_{\sigma}^{*} \mathcal{C}_{\sigma \tau} \mathcal{A}_{\tau} \quad, \quad \mathcal{C}_{\sigma \tau}=N_{c}^{\lambda(\sigma, \tau)}
$$

with "TMD-valued color matrix"

$$
\left(\mathrm{N}_{\mathrm{c}}^{2}-1\right) \sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_{\sigma}^{*} \tilde{\mathcal{C}}_{\sigma \tau}\left(x,\left|k_{T}\right|\right) \mathcal{A}_{\tau} \quad, \quad \tilde{\mathcal{C}}_{\sigma \tau}\left(x,\left|k_{T}\right|\right)=N_{c}^{\bar{\lambda}(\sigma, \tau)} \tilde{\mathcal{F}}_{\sigma \tau}\left(x,\left|k_{T}\right|\right)
$$

where each function $\tilde{\mathcal{F}}_{\text {ot }}$ is one of 10 functions

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{q} 9}^{(1)}, \mathcal{F}_{\mathrm{q} 9}^{(2)}, \quad \mathcal{F}_{\mathrm{q} 9}^{(3)} \\
& \mathcal{F}_{g g}^{(1)}, \mathcal{F}_{g g}^{(2)}, \mathcal{F}_{g g}^{(3)}, \mathcal{F}_{g g}^{(4)}, \mathcal{F}_{g g}^{(5)}, \mathcal{F}_{g g}^{(6)}, \mathcal{F}_{g g}^{(7)}
\end{aligned}
$$

ITMD* factorization for more than 2 jets

$$
\begin{aligned}
& \mathcal{F}_{\mathfrak{q} \mathfrak{g}}^{(1)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) u^{[-]+} \hat{\mathrm{F}}^{\mathrm{i}+}(0) u^{[+]}\right]\right\rangle, \quad\langle\cdots\rangle=2 \int \frac{\mathrm{~d}^{4} \xi}{(2 \pi)^{3} \mathrm{P}^{+}} \delta\left(\xi_{+}\right) \mathrm{e}^{\mathrm{ik} \cdot \xi}\langle\mathrm{P}| \cdots|\mathrm{P}\rangle \\
& \mathcal{F}_{\mathrm{qg}}^{(2)}\left(\mathrm{x}, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\frac{\operatorname{Tr}\left[\mathcal{U}^{[\square]}\right]}{\mathrm{N}_{\mathrm{c}}} \operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) \mathcal{U}^{[+]+\hat{F}^{i+}}(0) \mathcal{U}^{[+]}\right]\right\rangle \\
& \mathcal{F}_{q 9}^{(3)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) u^{[+]+} \hat{\mathrm{F}}^{i+}(0) U^{[\square]} U^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(1)}\left(x, k_{T}\right)=\left\langle\frac{\operatorname{Tr}\left[U^{[\square] \dagger}\right]}{N_{c}} \operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) U^{[-] \dagger} \hat{\mathrm{F}}^{i+}(0) U^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g 9}^{(2)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\frac{1}{\mathrm{~N}_{\mathrm{c}}}\left\langle\operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) \mathcal{U}^{[\square] \dagger}\right] \operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(0) \mathcal{U}^{[\square]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(3)}\left(x, k_{T}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) U^{[+]+} \hat{\mathrm{F}}^{i+}(0) U^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(4)}\left(x, k_{T}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) \mathcal{U}^{[-]+} \hat{\mathrm{F}}^{i+}(0) \mathcal{U}^{[-]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(5)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{\mathrm{i}+}(\xi) \mathcal{U}^{[\square] \dagger} \mathcal{U}^{[+] \dagger \hat{\mathrm{F}}^{i+}}(0) \mathcal{U}^{[\square]} \mathcal{U}^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(6)}\left(x, k_{T}\right)=\left\langle\frac{\operatorname{Tr}\left[U^{[\square]}\right]}{N_{c}} \frac{\operatorname{Tr}\left[U^{[\square]+}\right]}{N_{c}} \operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) U^{[+] \dagger} \hat{F}^{i+}(0) U^{[+]}\right]\right\rangle \\
& \mathcal{F}_{g g}^{(7)}\left(x, \mathrm{k}_{\mathrm{T}}\right)=\left\langle\frac{\operatorname{Tr}\left[\mathcal{U}^{[\square]}\right]}{\mathrm{N}_{\mathrm{c}}} \operatorname{Tr}\left[\hat{\mathrm{~F}}^{i+}(\xi) \mathcal{U}^{[\square] \dagger} \mathcal{U}^{[+\rceil \dagger \hat{F}^{i+}}(0) \mathcal{U}^{[+]]}\right]\right\rangle
\end{aligned}
$$

Start with dipole distribution $\mathcal{F}_{q 9}^{(1)}\left(x, k_{T}\right)=\left\langle\operatorname{Tr}\left[\hat{\mathrm{F}}^{i+}(\xi) \mathcal{U}^{[-] \dagger} \hat{\mathrm{F}}^{i+}(0) \mathcal{U}^{[+]}\right]\right\rangle$evolved via the BK equation formulated in momentum space supplemented with subleading corrections and fitted to F_{2} data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, $\mathcal{F}_{\mathrm{qg}}^{(2)}, \mathcal{F}_{\mathrm{gg}}^{(1)}, \mathcal{F}_{g 9}^{(2)}, \mathcal{F}_{\mathrm{gg}}^{(6)}$, in the mean-field approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in $1 / N_{c}$. In this approximation, the same distributions suffice for trijets.

KS gluon TMDs in proton

KS gluon TMDs in lead

Dependence of $\mathcal{F}_{\mathrm{qg}}^{(1)}$ on k_{T} below 1 GeV approximated by power-like fall-off. For higher values of $\left|k_{T}\right|$ it is a solution to the $B K$ equation.
TMDs decrease as $1 /\left|k_{T}\right|$ for increasing $\left|k_{T}\right|$, except $\mathcal{F}_{g 9}^{(2)}$, which decreases faster (even becomes negative, absolute value shown here).

KS gluon TMDs in proton and lead

KS gluon TMDs in proton and lead

Ratio Pb / p is smaller than 1 for small χ, but can become larger than 1 for moderate x and large $\left|k_{T}\right|$.

Set up

We consider p-p and p-Pb collisions at 5.02 TeV producing at least 3 jets with forward rapidities $3.2<\left|y_{1}^{*}, y_{2}^{*}, y_{3}^{*}\right|<4.9$ in the CM frame.

Jet definition: $\Delta \mathrm{R}>0.5, \mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$
renormalization/factorization scale: $\left(p_{\mathrm{T} 1}+\mathrm{p}_{\mathrm{T} 2}+\mathrm{p}_{\mathrm{T} 3}\right) / 3$
Collinear PDFs: CTEQ10NLO from LHAPDF6
Include all partonic processes with 5 light flavors with an (off-shell) gluon and a quark or gluon in the initial state.
observables:
$\Delta \phi_{12}$ (angle between 2 hardest jets),
$\Delta \phi_{13}$ (angle between hardest jet and $3^{\text {rd }}$ hardest jet),
$\Delta \phi_{(12) 3}$ (angle between the sum of the two hardest and the $3^{\text {rd }}$ hardest jet. Is sensitive to momentum inbalance)
Nuclear modification ratio $R_{p A}=\frac{1}{A} \frac{d \sigma^{\mathrm{pPb}} / \mathrm{d} \mathcal{O}}{\mathrm{d} \sigma^{\mathrm{pp}} / \mathrm{d} \mathcal{O}}$ where A is the number of nucleons
Calculations performed independently with LxJet (Kotko) and KATie (AvH 2018)

$S(x)$ refers to the x-dependent treatment of the nuclear target area, guaranteeing unitarity.
Saturation effect for $\Delta \phi_{(12) 3} \approx \pi$, enhancement of pPb result for $\Delta \phi_{(12) 3}<\pi$ due to broadening of the TMD distributions.

ITMD* normalization significantly larger than HEF, due to different shape and normalization of the extra TMDs present in ITMD* but not in HEF.

Summary

- small-x Improved TMD factorization allows to consistently include saturation effects in calculations for forward dijets
- we extended ITMD factorization to ITMD* for more than 2 jets, and performed explicit calculations for 3 jets
- we observe significant saturation effects in the nuclear modification factor for momentum inbalance-sensitive observable
- we observe significant differences between results from ITMD* and $k_{T} /$ high-energy factorization, implying strong discriminating potential
- multi-(say more than 2)-jet observables are interesting for small-x physics (see also Van Haevermaet, AvH, Kotko, Kutak, Van Mechelen 2020)

Thank you for your attention.

