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|Explicit kT -employing factorization|

TMD factorization

• holds at leading power in kT/µ

• on-shell parton-level matrix elements

• Transverse Momentum Dependent PDFs,
evolve via the Collins-Soper-Sterman equations,
re-sum large logs of kT/µ

High energy factorization

dσhh =
∑
a,b

∫
dx1

d2kT1

π

∫
dx2

d2kT2

π
Fa(x1, kT 1)Fb(x2, kT 2)dσab(x1, kT 1, x2, kT 2)

• focus on small-x, not neglecting powers of kT/µ

• off-shell parton-level matrix elements

• Transvers Momentum Dependent, or un-integrated, PDFs,
evolve to resum logs of 1/x,
e.g. with BFKL or CCFM equations, or their non-linear extensions,
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|QCD evolution, dilute vs. dense, forward jets|
art by Piotr Kotko

A dilute system carries a few
high-x partons contributing to the
hard scattering.

A dense system carries many
low-x partons.

At high density, gluons are imag-
ined to undergo recombination,
and to saturate.

This is modeled with non-linear
evolution equations, involving
explicit non-vanishing kT .

x
x
x
x
x
x
x

Saturation implies the turnover of the gluon density, stopping
it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which
partons from the nucleus have small x.
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|ITMD∗ factorization for more than 2 jets|

We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized
target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does
appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit
for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded
to be present from 3-jet formulae in CGC (Iancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant off-
shell hard scattering amplitudes

∑
i,j

M∗i

(
k
(i)
T k

(j)
T

2|~kT |2
(F +H) +

q
(i)
T q

(j)
T

2|~qT |2
(F −H)

)
Mj , ~qT · ~kT = 0

∑
iMik

(i)
T is gauge invariant while

∑
iMiq

(i)
T is not. For dijets, it happens that F = H.

In the following only the manifestly gauge-invariant contribution is included, hence the
designation ITMD∗.
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|ITMD∗ factorization for more than 2 jets|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑
a

∫
dx1d

2kT

∫
dx2 dΦg∗a→n 1

fluxga
Fg(x1, kT , µ) fa(x2, µ)

∑
color

∣∣∣M(color)
g∗a→n

∣∣∣2
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|ITMD∗ factorization for more than 2 jets|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑
a

∫
dx1d

2kT

∫
dx2 dΦg∗a→n 1

fluxga
Fg(x1, kT , µ) fa(x2, µ)

∑
color

∣∣∣M(color)
g∗a→n

∣∣∣2
Color connection representation: turn adjoint gluon indices a into fundamental indices i, j

M̃ ··· i ···
j ≡ M ···a ··· (

√
2Ta)ij∑

color

∣∣∣M(color)
∣∣∣2 = ∑

i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃
i1i2...in+2
j1j2...jn+2

)∗(
M̃
i1i2...in+2
j1j2...jn+2

)
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|ITMD∗ factorization for more than 2 jets|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑
a

∫
dx1d

2kT

∫
dx2 dΦg∗a→n 1

fluxga
Fg(x1, kT , µ) fa(x2, µ)

∑
color

∣∣∣M(color)
g∗a→n

∣∣∣2
Color connection representation: turn adjoint gluon indices a into fundamental indices i, j

M̃ ··· i ···
j ≡ M ···a ··· (

√
2Ta)ij∑

color

∣∣∣M(color)
∣∣∣2 = ∑

i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃
i1i2...in+2
j1j2...jn+2

)∗(
M̃
i1i2...in+2
j1j2...jn+2

)
Decomposition into partial amplitudes (Kanaki, Papadopoulos 2000; Maltoni, Paul, Stelzer, Willenbrock 2003)

M̃
i1i2...in+2
j1j2...jn+2

=
∑
σ∈Sn+2

δi1jσ(1)δ
i2
jσ(2)
· · · δin+2jσ(n+2)

Aσ
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|ITMD∗ factorization for more than 2 jets|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑
a

∫
dx1d

2kT

∫
dx2 dΦg∗a→n 1

fluxga
Fg(x1, kT , µ) fa(x2, µ)

∑
color

∣∣∣M(color)
g∗a→n

∣∣∣2
Color connection representation: turn adjoint gluon indices a into fundamental indices i, j

M̃ ··· i ···
j ≡ M ···a ··· (

√
2Ta)ij∑

color

∣∣∣M(color)
∣∣∣2 = ∑

i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃
i1i2...in+2
j1j2...jn+2

)∗(
M̃
i1i2...in+2
j1j2...jn+2

)
Decomposition into partial amplitudes (Kanaki, Papadopoulos 2000; Maltoni, Paul, Stelzer, Willenbrock 2003)

M̃
i1i2...in+2
j1j2...jn+2

=
∑
σ∈Sn+2

δi1jσ(1)δ
i2
jσ(2)
· · · δin+2jσ(n+2)

Aσ

Color sum in terms of a color matrix∑
color

∣∣∣M(color)
∣∣∣2 = ∑

σ∈Sn+2

∑
τ∈Sn+2

A∗σ CστAτ

Cστ =
∑

i1,i2,...,in+2

∑
j1,j2,...,jn+2

δi1jσ(1)δ
i2
jσ(2)
· · · δin+2jσ(n+2)

δi1jτ(1)δ
i2
jτ(2)
· · · δin+2jτ(n+2)

= Nλ(σ,τ)
c
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|ITMD∗ factorization for more than 2 jets|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑
a

∫
dx1d

2kT

∫
dx2 dΦg∗a→n 1

fluxga
Fg(x1, kT , µ) fa(x2, µ)

∑
color

∣∣∣M(color)
g∗a→n

∣∣∣2

Fg
∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃
i1i2...in+2
j1j2...jn+2

)∗(
M̃
i1i2...in+2
j1j2...jn+2

)
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|ITMD∗ factorization for more than 2 jets|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑
a

∫
dx1d

2kT

∫
dx2 dΦg∗a→n 1

fluxga
Fg(x1, kT , µ) fa(x2, µ)

∑
color

∣∣∣M(color)
g∗a→n

∣∣∣2
ITMD∗ formula: replace

Fg
∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃
i1i2...in+2
j1j2...jn+2

)∗(
M̃
i1i2...in+2
j1j2...jn+2

)
with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

(N2
c − 1)

∑
i1,...,in

∑
j1,...,jn+2

∑
ı̄1,...,̄ın+2

∑
̄1,...,̄n+2

(
M̃
i1i2···in+2
j1j2···jn+2

)∗ (
M̃
ı̄1 ı̄2···̄ın+2
̄1 ̄2···̄n+2

)
× 2

∫
d4ξ

(2π)3P+
δ(ξ+) e

ik·ξ
〈
P
∣∣∣(F̂+(ξ))j1

i1

(
F̂+(0)

)̄1
ı̄1

(
U[λ2]

)
i2 ı̄2

(
U[λ2]†

)j2 ̄2
· · ·

· · ·
(
U[λn+2]

)
in+2 ı̄n+2

(
U[λn+2]†

)jn+2 ̄n+2∣∣∣P〉
where P is the light-like momentum of the hadron (with P− = 0), and kµ = xPµ + kµT ,

where F̂ is the field strenght,
and U± is a Wilson line from 0 to ξ via a “staple-like detour” to ±∞ depending on the
type and state (initial/final) of parton. 99913



|ITMD∗ factorization for more than 2 jets|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑
a

∫
dx1d

2kT

∫
dx2 dΦg∗a→n 1

fluxga
Fg(x1, kT , µ) fa(x2, µ)

∑
color

∣∣∣M(color)
g∗a→n

∣∣∣2
ITMD∗ formula: replace

Fg
∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
i1,i2,...,in+2

∑
j1,j2,...,jn+2

(
M̃
i1i2...in+2
j1j2...jn+2

)∗(
M̃
i1i2...in+2
j1j2...jn+2

)
with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

(N2
c − 1)

∑
i1,...,in

∑
j1,...,jn+2

∑
ı̄1,...,̄ın+2

∑
̄1,...,̄n+2

(
M̃
i1i2···in+2
j1j2···jn+2

)∗ (
M̃
ı̄1 ı̄2···̄ın+2
̄1 ̄2···̄n+2

)
× 2

∫
d4ξ

(2π)3P+
δ(ξ+) e

ik·ξ
〈
P
∣∣∣(F̂+(ξ))j1

i1

(
F̂+(0)

)̄1
ı̄1

(
U[λ2]

)
i2 ı̄2

(
U[λ2]†

)j2 ̄2
· · ·

· · ·
(
U[λn+2]

)
in+2 ı̄n+2

(
U[λn+2]†

)jn+2 ̄n+2∣∣∣P〉
where P is the light-like momentum of the hadron (with P− = 0), and kµ = xPµ + kµT ,

where F̂ is the field strenght,
and U± is a Wilson line from 0 to ξ via a “staple-like detour” to ±∞ depending on the
type and state (initial/final) of parton.

x

M̃
i1i2...in+2
j1j2...jn+2

=
∑
σ∈Sn+2

δi1jσ(1)δ
i2
jσ(2)
· · · δin+2jσ(n+2)

Aσ
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|ITMD∗ factorization for more than 2 jets|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑
a

∫
dx1d

2kT

∫
dx2 dΦg∗a→n 1

fluxga
Fg(x1, kT , µ) fa(x2, µ)

∑
color

∣∣∣M(color)
g∗a→n

∣∣∣2
ITMD∗ formula: replace

Fg
∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗σ CστAτ , Cστ = N
λ(σ,τ)
c

with “TMD-valued color matrix”

(N2
c − 1)

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗σ C̃στ(x, |kT |)Aτ , C̃στ(x, |kT |) = N
λ̄(σ,τ)
c F̃στ(x, |kT |)

where each function F̃στ is one of 10 functions

F(1)
qg , F(2)

qg , F(3)
qg

F(1)
gg , F(2)

gg , F(3)
gg , F(4)

gg , F(5)
gg , F(6)

gg , F(7)
gg
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|ITMD∗ factorization for more than 2 jets|

F
(1)
qg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
,
〈
· · ·
〉
= 2

∫
d4ξ

(2π)3P+
δ(ξ+) e

ik·ξ
〈
P
∣∣∣ · · · ∣∣∣P〉

F
(2)
qg (x, kT ) =

〈
Tr
[
U[�]

]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(3)
qg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[�]U[+]

]〉
F
(1)
gg (x, kT ) =

〈
Tr
[
U[�]†]
Nc

Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉

F
(2)
gg (x, kT ) =

1

Nc

〈
Tr
[
F̂i+ (ξ)U[�]†

]
Tr
[
F̂i+ (0)U[�]

]〉
F
(3)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(4)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[−]

]〉
F
(5)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[�]†U[+]†F̂i+ (0)U[�]U[+]

]〉
F
(6)
gg (x, kT ) =

〈
Tr
[
U[�]

]
Nc

Tr
[
U[�]†]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉

F
(7)
gg (x, kT ) =

〈
Tr
[
U[�]

]
Nc

Tr
[
F̂i+ (ξ)U[�]†U[+]†F̂i+ (0)U[+]

]〉
99916



|ITMD gluons|

Start with dipole distribution F
(1)
qg (x, kT) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
evolved via the

BK equation formulated in momentum space supplemented with subleading corrections
and fitted to F2 data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, F
(2)
qg ,F

(1)
gg ,F

(2)
gg ,F

(6)
gg , in the mean-field

approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in 1/Nc. In this approximation, the same distributions suffice for
trijets.
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|ITMD gluons| Bury, AvH, Kotko, Kutak 2020

Dependence of F
(1)
qg on kT below 1GeV approximated by power-like fall-off. For higher

values of |kT | it is a solution to the BK equation.

TMDs decrease as 1/|kT | for increasing |kT |, except F
(2)
gg , which decreases faster (even

becomes negative, absolute value shown here).
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|ITMD gluons| Bury, AvH, Kotko, Kutak 2020

Ratio Pb/p is smaller than 1 for small x,
but can become larger than 1 for moderate x and large |kT |.
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|Set up|

We consider p-p and p-Pb collisions at 5.02TeV producing at least 3 jets with forward
rapidities 3.2 < |y∗1, y

∗
2, y

∗
3| < 4.9 in the CM frame.

Jet definition: ∆R > 0.5, pT > 20GeV

renormalization/factorization scale: (pT 1 + pT 2 + pT 3)/3

Collinear PDFs: CTEQ10NLO from LHAPDF6

Include all partonic processes with 5 light flavors with an (off-shell) gluon and a quark or
gluon in the initial state.

observables:
∆φ12 (angle between 2 hardest jets),
∆φ13 (angle between hardest jet and 3rd hardest jet),
∆φ(12)3 (angle between the sum of the two hardest and the 3rd hardest jet. Is sensitive to
momentum inbalance)

Nuclear modification ratio RpA =
1

A

dσpPb/dO

dσpp/dO
where A is the number of nucleons

Calculations performed independently with LxJet (Kotko) and KATIE (AvH 2018)
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|Results| Bury, AvH, Kotko, Kutak 2020

S(x) refers to the x-dependent treatment
of the nuclear target area, guaranteeing
unitarity.

Saturation effect for ∆φ(12)3 ≈ π,
enhancement of pPb result for ∆φ(12)3 < π

due to broadening of the TMD distribu-
tions.

ITMD∗ normalization significantly larger
than HEF, due to different shape and
normalization of the extra TMDs present
in ITMD∗ but not in HEF.
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|Summary|

• small-x Improved TMD factorization allows to consistently include saturation effects
in calculations for forward dijets

• we extended ITMD factorization to ITMD∗ for more than 2 jets, and performed explicit
calculations for 3 jets

• we observe significant saturation effects in the nuclear modification factor for momen-
tum inbalance-sensitive observable

• we observe significant differences between results from ITMD∗ and kT/high-energy
factorization, implying strong discriminating potential

• multi-(say more than 2)-jet observables are interesting for small-x physics
(see also Van Haevermaet, AvH, Kotko, Kutak, Van Mechelen 2020)
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Thank you for your attention.


