Forward trijet production at LHC

Andreas van Hameren Institute of Nuclear Physics Polish Academy of Sciences Kraków

in collaboration with Marcin Bury, Piotr Kotko and Krzysztof Kutak

presented at

Resummation, Evolution, Factorization 2020 11-12-2020

This research was supported by grant agreement No. 824093 with STRONG-2220

Explicit k_T-employing factorization

TMD factorization

- holds at leading power in k_T/μ
- on-shell parton-level matrix elements
- Transverse Momentum Dependent PDFs, evolve via the Collins-Soper-Sterman equations, re-sum large logs of k_T/μ

High energy factorization

$$d\sigma_{hh} = \sum_{a,b} \int dx_1 \frac{d^2 k_{TI}}{\pi} \int dx_2 \frac{d^2 k_{T2}}{\pi} \mathcal{F}_a(x_1, k_{T1}) \mathcal{F}_b(x_2, k_{T2}) d\sigma_{ab}(x_1, k_{T1}, x_2, k_{T2})$$

- focus on small-x, not neglecting powers of k_T/μ
- off-shell parton-level matrix elements
- Transvers Momentum Dependent, or un-integrated, PDFs, evolve to resum logs of 1/x, e.g. with BFKL or CCFM equations, or their non-linear extensions,

QCD evolution, dilute vs. dense, forward jets

A dilute system carries a few high-x partons contributing to the hard scattering.

A dense system carries many low-x partons.

At high density, gluons are imagined to undergo recombination, and to saturate.

This is modeled with non-linear evolution equations, involving explicit non-vanishing k_T .

Saturation implies the turnover of the gluon density, stopping it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which partons from the nucleus have small x.

art by Piotr Kotko

pA (dilute-dense) collisions within CGC

art by Piotr Kotko CGC & TMD Leading twist study FORWARD DIJET PRODUCTION IN CGC [F. Dominguez, C. Marguet, B. Xiao, F. Yuan, 2011] LEADING POWER LIMIT \vec{P}_{T1} $\vec{k}_T = \vec{P}_{T1} + \vec{P}_{T2}$ $\frac{Q_s}{\sqrt{P_T}} \sim \frac{k_T}{\sqrt{P_T}} \sim \frac{\mu}{\sqrt{P_T}}$ leeve Prz Pr= ZPr1-2Pr2 SATURATION HARD LARGE-X EXCHANGE SCALE PARTON SCALE OF SMALL-X $\begin{array}{c} (\chi_1) & \text{GLUONS}(\chi_2) \\ \chi_2 << \chi_1 & \frac{d\sigma_{pA \to 2j+X}}{dy_1 dy_2 d^2 p_{T1} d^2 p_{T2}} \sim \sum_{a,c,d} f_{a/p}(x_1,\mu) \sum_i \frac{H_{ag \to cd}^{(i)}(k_T=0)}{A} \\ \end{array}$ Equivalence of leading power CGC and TMD 'factorization' ON-SHELL was recently shown for dijet+photon process. DISTRIBUTIONS HARD FACTORS [T. Altinoluk, R. Boussarie, C. Marguet, P. Taels, 2018] (SMALL-X LIMIT)

Intensively studied:

[D. Kharzeev, Y. Kovchegov, K. Tuchin, 2003]
[B. Xiao, F. Yuan, 2010]
[F. Dominguez, C. Marquet, B. Xiao, F. Yuan, 2011]
[A. Metz, J. Zhou, 2011]
[E. Akcakaya, A. Schafer, J. Zhou, 2012]
[C. Marquet, E. Petreska, C. Roiesnel, 2016]
[I. Balitsky, A. Tarasov, 2015, 2016]
[D. Boer, P. Mulders, J. Zhou, Y. Zhou, 2017]
[C. Marquet, C. Roiesnel, P. Taels, 2018]
[Y. Kovchegov, D. Pitonyak, M. Sievert, 2017,2018]
[T. Altinoluk, R. Boussarie, 2019]

art by Piotr Kotko

Factorization formula for forward dijets in p-p and p-A collisions

[PK, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, 2015]

ITMD^{*} factorization for more than 2 jets

We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded to be present from 3-jet formulae in CGC (lancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant offshell hard scattering amplitudes

$$\sum_{i,j} \mathcal{M}^*_i \left(\frac{k_T^{(i)} k_T^{(j)}}{2|\vec{k}_T|^2} (\mathcal{F} + \mathcal{H}) + \frac{q_T^{(i)} q_T^{(j)}}{2|\vec{q}_T|^2} (\mathcal{F} - \mathcal{H}) \right) \mathcal{M}_j \quad , \quad \vec{q}_T \cdot \vec{k}_T = 0$$

 $\textstyle \sum_{i} \mathcal{M}_{i} k_{T}^{(i)} \text{ is gauge invariant while } \sum_{i} \mathcal{M}_{i} q_{T}^{(i)} \text{ is not. For dijets, it happens that } \mathcal{F} = \mathcal{H}.$

In the following only the manifestly gauge-invariant contribution is included, hence the designation ITMD^* .

ITMD^* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{\alpha} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^* \alpha \to n} \ \frac{1}{\mathsf{flux}_{g\alpha}} \ \mathcal{F}_g(x_1, k_T, \mu) \ f_\alpha(x_2, \mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^* \alpha \to n}^{(\mathsf{color})} \right|^2$$

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{\alpha} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^* \alpha \to n} \ \frac{1}{\mathsf{flux}_{g\alpha}} \ \mathcal{F}_g(x_1, k_T, \mu) \ f_\alpha(x_2, \mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^* \alpha \to n}^{(\mathsf{color})} \right|^2$$

Color connection representation: turn adjoint gluon indices a into fundamental indices i, j

$$\begin{split} \tilde{\mathcal{M}}^{\cdots\,i\,\cdots} &\equiv \ \mathcal{M}^{\cdots\,a\,\cdots}\,(\sqrt{2}T^{a})^{i}_{j} \\ \sum_{\text{color}} \left|\mathcal{M}^{(\text{color})}\right|^{2} &= \sum_{i_{1},i_{2},\ldots,i_{n+2}}\sum_{j_{1},j_{2},\ldots,j_{n+2}} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\ldots i_{n+2}}_{j_{1}j_{2}\ldots j_{n+2}}\right)^{*} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\ldots i_{n+2}}_{j_{1}j_{2}\ldots j_{n+2}}\right) \end{split}$$

ITMD^{*} factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{\alpha} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^* \alpha \to n} \ \frac{1}{\mathsf{flux}_{g \alpha}} \ \mathcal{F}_g(x_1, k_T, \mu) \ f_\alpha(x_2, \mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^* \alpha \to n}^{(\mathsf{color})} \right|^2$$

Color connection representation: turn adjoint gluon indices a into fundamental indices i, j

$$\begin{split} \tilde{\mathcal{M}}^{\cdots\,i\cdots} &\equiv \ \mathcal{M}^{\cdots\,a\cdots} \left(\sqrt{2}T^{a}\right)^{i}_{j} \\ \sum_{\text{color}} \left|\mathcal{M}^{(\text{color})}\right|^{2} &= \sum_{i_{1},i_{2},\dots,i_{n+2}} \sum_{j_{1},j_{2},\dots,j_{n+2}} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\dots i_{n+2}}_{j_{1}j_{2}\dots j_{n+2}}\right)^{*} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\dots i_{n+2}}_{j_{1}j_{2}\dots j_{n+2}}\right) \end{split}$$

Decomposition into partial amplitudes (Kanaki, Papadopoulos 2000; Maltoni, Paul, Stelzer, Willenbrock 2003)

$$\tilde{\mathcal{M}}_{j_1 j_2 \dots j_{n+2}}^{i_1 i_2 \dots i_{n+2}} = \sum_{\sigma \in S_{n+2}} \delta_{j_{\sigma(1)}}^{i_1} \delta_{j_{\sigma(2)}}^{i_2} \cdots \delta_{j_{\sigma(n+2)}}^{i_{n+2}} \mathcal{A}_{\sigma(n+2)}$$

ITMD^{*} factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{\alpha} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^* \alpha \to n} \ \frac{1}{\mathsf{flux}_{g\alpha}} \ \mathcal{F}_g(x_1, k_T, \mu) \ f_\alpha(x_2, \mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^* \alpha \to n}^{(\mathsf{color})} \right|^2$$

Color connection representation: turn adjoint gluon indices a into fundamental indices i, j

$$\begin{split} \tilde{\mathcal{M}}^{\cdots\,i\cdots} &\equiv \ \mathcal{M}^{\cdots\,a\cdots} \left(\sqrt{2}T^{a}\right)^{i}_{j} \\ \sum_{\text{color}} \left|\mathcal{M}^{(\text{color})}\right|^{2} &= \sum_{i_{1},i_{2},\ldots,i_{n+2}} \sum_{j_{1},j_{2},\ldots,j_{n+2}} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\ldots i_{n+2}}_{j_{1}j_{2}\ldots j_{n+2}}\right)^{*} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\ldots i_{n+2}}_{j_{1}j_{2}\ldots j_{n+2}}\right) \end{split}$$

Decomposition into partial amplitudes (Kanaki, Papadopoulos 2000; Maltoni, Paul, Stelzer, Willenbrock 2003)

$$\tilde{\mathcal{M}}_{j_1 j_2 \dots j_{n+2}}^{i_1 i_2 \dots i_{n+2}} = \sum_{\sigma \in S_{n+2}} \delta_{j_{\sigma(1)}}^{i_1} \delta_{j_{\sigma(2)}}^{i_2} \cdots \delta_{j_{\sigma(n+2)}}^{i_{n+2}} \mathcal{A}_{\sigma}$$

Color sum in terms of a color matrix

$$\sum_{\text{color}} \left| \mathfrak{M}^{(\text{color})} \right|^2 = \sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_{\sigma}^* \, \mathfrak{C}_{\sigma\tau} \, \mathcal{A}_{\tau}$$

$$\mathcal{C}_{\sigma\tau} = \sum_{i_1, i_2, \dots, i_{n+2}} \sum_{j_1, j_2, \dots, j_{n+2}} \delta^{i_1}_{j_{\sigma(1)}} \delta^{i_2}_{j_{\sigma(2)}} \cdots \delta^{i_{n+2}}_{j_{\sigma(n+2)}} \delta^{i_1}_{j_{\tau(1)}} \delta^{i_2}_{j_{\tau(2)}} \cdots \delta^{i_{n+2}}_{j_{\tau(n+2)}} = N_c^{\lambda(\sigma, \tau)}$$

ITMD^* factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{\alpha} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^* \alpha \to n} \ \frac{1}{\mathsf{flux}_{g\alpha}} \ \mathcal{F}_g(x_1, k_T, \mu) \ f_\alpha(x_2, \mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^* \alpha \to n}^{(\mathsf{color})} \right|^2$$

$$\mathcal{F}_{g} \sum_{\text{color}} \left| \mathcal{M}^{(\text{color})} \right|^{2} = \mathcal{F}_{g} \sum_{i_{1}, i_{2}, \dots, i_{n+2}} \sum_{j_{1}, j_{2}, \dots, j_{n+2}} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\dots i_{n+2}}_{j_{1}j_{2}\dots j_{n+2}} \right)^{*} \left(\tilde{\mathcal{M}}^{i_{1}i_{2}\dots i_{n+2}}_{j_{1}j_{2}\dots j_{n+2}} \right)$$

ITMD^{*} factorization for more than 2 jets

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{\alpha} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^* \alpha \to n} \ \frac{1}{\mathsf{flux}_{g\alpha}} \ \mathcal{F}_g(x_1, k_T, \mu) \ f_\alpha(x_2, \mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^* \alpha \to n}^{(\mathsf{color})} \right|^2$$

ITMD* formula: replace

$$\mathcal{F}_{g} \sum_{\text{color}} \left| \mathcal{M}^{(\text{color})} \right|^{2} = \mathcal{F}_{g} \sum_{i_{1}, i_{2}, \dots, i_{n+2}} \sum_{j_{1}, j_{2}, \dots, j_{n+2}} \left(\tilde{\mathcal{M}}^{i_{1}i_{2} \dots i_{n+2}}_{j_{1}j_{2} \dots j_{n+2}} \right)^{*} \left(\tilde{\mathcal{M}}^{i_{1}i_{2} \dots i_{n+2}}_{j_{1}j_{2} \dots j_{n+2}} \right)$$

with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

$$\begin{split} (\mathsf{N}_{c}^{2}-1) \sum_{i_{1},\dots,i_{n}} \sum_{j_{1},\dots,j_{n+2}} \sum_{\bar{\imath}_{1},\dots,\bar{\imath}_{n+2}} \sum_{\bar{\jmath}_{1},\dots,\bar{\jmath}_{n+2}} \left(\tilde{\mathcal{M}}_{j_{1}j_{2}\cdots j_{n+2}}^{i_{1}i_{1}\bar{\imath}_{2}\cdots i_{n+2}} \right)^{*} \left(\tilde{\mathcal{M}}_{\bar{\jmath}_{1}\bar{\jmath}_{2}\cdots \bar{\jmath}_{n+2}}^{i_{1}\bar{\imath}_{1}\bar{\imath}_{2}\cdots i_{n+2}} \right) \\ \times 2 \int \frac{d^{4}\xi}{(2\pi)^{3}\mathsf{P}^{+}} \delta(\xi_{+}) \, e^{i\mathbf{k}\cdot\xi} \left\langle \mathsf{P} \Big| \left(\hat{\mathsf{F}}^{+}(\xi) \right)_{i_{1}}^{j_{1}} \left(\hat{\mathsf{F}}^{+}(0) \right)_{\bar{\imath}_{1}}^{\bar{\jmath}_{1}} \left(\mathcal{U}^{[\lambda_{2}]} \right)_{i_{2}\bar{\imath}_{2}} \left(\mathcal{U}^{[\lambda_{2}]\dagger} \right)^{j_{2}\bar{\jmath}_{2}} \cdots \\ \cdots \left(\mathcal{U}^{[\lambda_{n+2}]} \right)_{i_{n+2}\bar{\imath}_{n+2}} \left(\mathcal{U}^{[\lambda_{n+2}]\dagger} \right)^{j_{n+2}\bar{\jmath}_{n+2}} \left| \mathsf{P} \right\rangle \end{split}$$

where P is the light-like momentum of the hadron (with $P^- = 0$), and $k^\mu = xP^\mu + k_T^\mu$, where \hat{F} is the field strenght,

and \mathcal{U}^{\pm} is a Wilson line from 0 to ξ via a "staple-like detour" to $\pm \infty$ depending on the type and state (initial/final) of parton.

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{\alpha} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^* \alpha \to n} \ \frac{1}{\mathsf{flux}_{g \alpha}} \ \mathcal{F}_g(x_1, k_T, \mu) \ f_\alpha(x_2, \mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^* \alpha \to n}^{(\mathsf{color})} \right|^2$$

ITMD* formula: replace

$$\mathcal{F}_{g} \sum_{\text{color}} \left| \mathcal{M}^{(\text{color})} \right|^{2} = \mathcal{F}_{g} \sum_{i_{1}, i_{2}, \dots, i_{n+2}} \sum_{j_{1}, j_{2}, \dots, j_{n+2}} \left(\tilde{\mathcal{M}}^{i_{1}i_{2} \dots i_{n+2}}_{j_{1}j_{2} \dots j_{n+2}} \right)^{*} \left(\tilde{\mathcal{M}}^{i_{1}i_{2} \dots i_{n+2}}_{j_{1}j_{2} \dots j_{n+2}} \right)$$

with (Bomhof, Mulders, Pijlman 2006; Bury, Kotko, Kutak 2018)

$$\begin{split} (\mathsf{N}_{c}^{2}-1)\sum_{i_{1},...,i_{n}}\sum_{j_{1},...,j_{n+2}}\sum_{\bar{\imath}_{1},...,\bar{\imath}_{n+2}}\sum_{\bar{\jmath}_{1},...,\bar{\jmath}_{n+2}}\left(\tilde{\mathcal{M}}_{j_{1}j_{2}\cdots j_{n+2}}^{i_{1}i_{2}\cdots i_{n+2}}\right)^{*}\left(\tilde{\mathcal{M}}_{\bar{\jmath}_{1}j_{2}\cdots j_{n+2}}^{i_{1}\bar{\imath}_{2}\cdots i_{n+2}}\right)\\ &\times 2\int\frac{d^{4}\xi}{(2\pi)^{3}\mathsf{P}^{+}}\delta(\xi_{+})\,e^{i\mathbf{k}\cdot\xi}\left\langle\mathsf{P}\left|\left(\hat{\mathsf{F}}^{+}(\xi)\right)_{i_{1}}^{j_{1}}\left(\hat{\mathsf{F}}^{+}(0)\right)_{\bar{\imath}_{1}}^{\bar{\imath}_{1}}\left(\mathcal{U}^{[\lambda_{2}]}\right)_{i_{2}\bar{\imath}_{2}}\left(\mathcal{U}^{[\lambda_{2}]\dagger}\right)^{j_{2}\bar{\jmath}_{2}}\cdots\right)\\ &\cdots \left(\mathcal{U}^{[\lambda_{n+2}]}\right)_{i_{n+2}\bar{\imath}_{n+2}}\left(\mathcal{U}^{[\lambda_{n+2}]\dagger}\right)^{j_{n+2}\bar{\jmath}_{n+2}}\left|\mathsf{P}\right\rangle\\ \end{split}$$
 where \mathsf{P} is where \mathsf{P} is where $\hat{\mathsf{F}}$ is and \mathcal{U}^{\pm} is the set of the set of

Schematic hybrid (non-ITMD) factorization fomula

$$d\sigma = \sum_{\alpha} \int dx_1 d^2 k_T \int dx_2 \ d\Phi_{g^* \alpha \to n} \ \frac{1}{\mathsf{flux}_{g\alpha}} \ \mathcal{F}_g(x_1, k_T, \mu) \ f_\alpha(x_2, \mu) \ \sum_{\mathsf{color}} \left| \mathcal{M}_{g^* \alpha \to n}^{(\mathsf{color})} \right|^2$$

ITMD* formula: replace

$$\mathfrak{F}_g \sum_{\text{color}} \left| \mathfrak{M}^{(\text{color})} \right|^2 = \mathfrak{F}_g \sum_{\sigma \in S_{n+2}} \sum_{\tau \in S_{n+2}} \mathcal{A}_\sigma^* \, \mathfrak{C}_{\sigma\tau} \, \mathcal{A}_\tau \qquad , \quad \mathfrak{C}_{\sigma\tau} = N_c^{\lambda(\sigma,\tau)}$$

with "TMD-valued color matrix"

$$(N_{c}^{2}-1)\sum_{\sigma\in S_{n+2}}\sum_{\tau\in S_{n+2}}\mathcal{A}_{\sigma}^{*}\,\tilde{\mathbb{C}}_{\sigma\tau}(x,|k_{T}|)\,\mathcal{A}_{\tau}\quad,\quad\tilde{\mathbb{C}}_{\sigma\tau}(x,|k_{T}|)=N_{c}^{\bar{\lambda}(\sigma,\tau)}\tilde{\mathcal{F}}_{\sigma\tau}(x,|k_{T}|)$$

where each function $\tilde{\mathcal{F}}_{\sigma\tau}$ is one of 10 functions

$$\begin{split} \mathcal{F}_{qg}^{(1)}\left(x,k_{T}\right) &= \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \quad,\quad \left\langle\cdots\right\rangle = 2\int \frac{d^{4}\xi}{(2\pi)^{3}P^{+}}\delta(\xi_{+})\,e^{ik\cdot\xi}\left\langle P\right|\cdots\left|P\right\rangle \\ \mathcal{F}_{qg}^{(2)}\left(x,k_{T}\right) &= \left\langle \frac{\mathrm{Tr}\left[\mathcal{U}^{[\square]}\right]}{N_{c}}\mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{qg}^{(3)}\left(x,k_{T}\right) &= \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[+]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(1)}\left(x,k_{T}\right) &= \left\langle \frac{\mathrm{Tr}\left[\mathcal{U}^{[\square]\dagger}\right]}{N_{c}}\mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[-]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(2)}\left(x,k_{T}\right) &= \frac{1}{N_{c}}\left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\square]\dagger}\right]\mathrm{Tr}\left[\hat{F}^{i+}\left(0\right)\mathcal{U}^{[\square]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(3)}\left(x,k_{T}\right) &= \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\square]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[\square]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(4)}\left(x,k_{T}\right) &= \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\square]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[\square]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(5)}\left(x,k_{T}\right) &= \left\langle \mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\square]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[\square]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(6)}\left(x,k_{T}\right) &= \left\langle \frac{\mathrm{Tr}\left[\mathcal{U}^{[\square]}\right]}{N_{c}}\mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\square]\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \\ \mathcal{F}_{gg}^{(7)}\left(x,k_{T}\right) &= \left\langle \frac{\mathrm{Tr}\left[\mathcal{U}^{[\square]}\right]}{N_{c}}\mathrm{Tr}\left[\hat{F}^{i+}\left(\xi\right)\mathcal{U}^{[\square]\dagger}\hat{\mu}^{i+\dagger}\hat{F}^{i+}\left(0\right)\mathcal{U}^{[+]}\right]\right\rangle \end{split}$$

Start with dipole distribution $\mathcal{F}_{qg}^{(1)}(x, k_T) = \left\langle \operatorname{Tr} \left[\hat{F}^{i+}(\xi) \mathcal{U}^{[-]\dagger} \hat{F}^{i+}(0) \mathcal{U}^{[+]} \right] \right\rangle$ evolved via the BK equation formulated in momentum space supplemented with subleading corrections and fitted to F₂ data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, $\mathcal{F}_{qg}^{(2)}, \mathcal{F}_{gg}^{(1)}, \mathcal{F}_{gg}^{(2)}, \mathcal{F}_{gg}^{(6)}$, in the mean-field approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in $1/N_{\rm c}.$ In this approximation, the same distributions suffice for trijets.

KS gluon TMDs in proton

ITMD <u>gluons</u>

Dependence of $\mathcal{F}_{qg}^{(1)}$ on k_T below 1GeV approximated by power-like fall-off. For higher values of $|k_T|$ it is a solution to the BK equation.

TMDs decrease as $1/|k_T|$ for increasing $|k_T|$, except $\mathcal{F}_{gg}^{(2)}$, which decreases faster (even becomes negative, absolute value shown here).

ITMD gluons

Ratio Pb/p is smaller than 1 for small x, but can become larger than 1 for moderate x and large $|k_T|$.

We consider p-p and p-Pb collisions at 5.02TeV producing at least 3 jets with forward rapidities $3.2 < |y_1^*, y_2^*, y_3^*| < 4.9$ in the CM frame.

```
Jet definition: \Delta R > 0.5, \, p_T > 20 \text{GeV}
```

renormalization/factorization scale: $(p_{T1} + p_{T2} + p_{T3})/3$

Collinear PDFs: CTEQ10NLO from LHAPDF6

Include all partonic processes with 5 light flavors with an (off-shell) gluon and a quark or gluon in the initial state.

observables:

 $\Delta \phi_{12}$ (angle between 2 hardest jets),

 $\Delta \phi_{13}$ (angle between hardest jet and 3rd hardest jet),

 $\Delta\varphi_{(12)3}$ (angle between the sum of the two hardest and the 3^{rd} hardest jet. Is sensitive to momentum inbalance)

Nuclear modification ratio $R_{pA}=\frac{1}{A}\frac{d\sigma^{pPb}/d\Theta}{d\sigma^{pp}/d\Theta}$ where A is the number of nucleons

Calculations performed independently with LxJet (Kotko) and KATIE (AvH 2018)

Results

 $S(\boldsymbol{x})$ refers to the x-dependent treatment of the nuclear target area, guaranteeing unitarity.

Saturation effect for $\Delta\varphi_{(12)3}\approx\pi$, enhancement of pPb result for $\Delta\varphi_{(12)3}<\pi$ due to broadening of the TMD distributions.

ITMD* normalization significantly larger than HEF, due to different shape and normalization of the extra TMDs present in ITMD* but not in HEF.

- small-x Improved TMD factorization allows to consistently include saturation effects in calculations for forward dijets
- we extended ITMD factorization to ITMD* for more than 2 jets, and performed explicit calculations for 3 jets
- we observe significant saturation effects in the nuclear modification factor for momentum inbalance-sensitive observable
- \bullet we observe significant differences between results from ITMD* and $k_T/high-energy$ factorization, implying strong discriminating potential
- multi-(say more than 2)-jet observables are interesting for small-x physics (see also Van Haevermaet, AvH, Kotko, Kutak, Van Mechelen 2020)

Thank you for your attention.