Revisiting the production of J / ψ pairs at the LHC

A.A. Prokhorov, A.V. Lipatov, M.A. Malyshev, S.P. Baranov
based on Eur. Phys. J. C. 80 (2020) 11, 1046

Resummation, Evolution, Factorization 2020
11 December 2020

Introduction

- Non-relativistic QCD (NRQCD):

$$
\sigma(p p \rightarrow J / \psi+X)=\sum_{n} \widehat{\sigma}\left(p p \rightarrow c \bar{c}\left({ }^{2 S+1} L_{J}^{[n]}\right)+X\right)\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle
$$

- Progress in NRQCD evaluation of prompt double J / ψ production: complete LO calculations [Phys. Rev. Lett. 115, 022002 (2015)], relativistic corrections [JHEP 07, 051 (2013)] and partial tree-level NLO contributions [Phys. Rev. D 94, 074033 (2016); Phys. Rev. Lett. 111, 122001 (2013)]
- Predictions have sizeable discrepancies with the latest CMS [JHEP 09, 094 (2014)] and ATLAS [Eur. Phys. J. C 77, 76 (2017)] data, especially at large invariant mass $m(J / \psi, J / \psi)$ and rapidity separation $\Delta y(J / \psi, J / \psi)$ of the J / ψ pairs (underestimations by the NRQCD predictions up to 10 times).

Introduction

- At large invariant mass $m(J / \psi, J / \psi)$ the processes with large angular separation between the J / ψ mesons could play a role. One of such processes: quark and gluon fragmentations. Contribution of $g^{*} \rightarrow c \bar{c}\left[{ }^{3} S_{1}^{[8]}\right]$ intermediate state behaves as $1 / p_{T}^{4}$ and determine the single J / ψ production at high p_{T}
- One can expect a sizeble contribution from multiple gluon radiation originated during the QCD evolution. The multiple gluon radiation can be taken into account using the CCFM evolution equation
- Our goal is to investigate a role of multiple gluon fragmentation to the double J / ψ production
- We use the k_{T}-factorization approach with CCFM-evolved Transverse Momentum Dependent (TMD) gluon densities

Introduction

- DPS mechanism is expected to be important for double J / ψ production af foward rapidities
- The typical value of $\sigma_{e f f}$ extracted from experinemtal data are $12-20 \mathrm{mb}$. Estimations for processes with double quarkonia give lower value (at 2-3 times)
- Our second goal is to investigate DPS in

Color singlet contribution to J / ψ pair production

- Typical diagrams of prompt-prompt J / ψ pair production at the LO QCD $\mathcal{O}\left(\alpha_{s}^{4}\right)$
- We take into consideration LO off-shell (depending on the initial gluons transverse momenta) production amplitude of gluon-gluon subprocesses
- Cross section can be written:

$$
\begin{aligned}
& \left.\sigma(p p \rightarrow J / \psi J / \psi+X)=\int \frac{1}{16 \pi\left(x_{1} x_{2} s\right)^{2}} \right\rvert\, \overline{\mathcal{A}}\left(g^{*} g^{*} \rightarrow J / \psi J /\left.\psi\right|^{2} \times\right. \\
& \times f_{g}\left(x_{1}, k_{1 T}^{2}, \mu^{2}\right) f_{g}\left(x_{2}, k_{2 T}^{2}, \mu^{2}\right) d k_{1 T}^{2} d k_{2 T}^{2} d p_{1 T}^{2} d y_{1} d y_{2} \frac{d \phi_{1}}{2 \pi} \frac{d \phi_{2}}{2 \pi} \frac{d \psi_{1}}{2 \pi}
\end{aligned}
$$

where $f_{g}\left(x, k_{T}^{2}, \mu^{2}\right)$ is the TMD gluon density in a proton

- Amplitudes \mathcal{A} are calculated by S.P.Baranov [Phys. Rev. D 84, 054012 (2011)]

Color octet contribution to the J / ψ pair production

- Typical fragmentation diagrams of gluons and charm quarks into charmonium
- Fragmentation function in NRQCD formalism at the starting scale $\mu_{0}^{2}=m_{J / \psi}^{2}$:

$$
D_{a}^{J / \psi}\left(z, \mu_{0}^{2}\right)=\sum_{n} d_{a}^{n}\left(z, \mu_{0}^{2}\right)\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle
$$

$$
\alpha_{s}
$$

$$
\alpha_{s}^{2}
$$

α_{s}^{3}

k_{T}-factorization vs collinear

- Typical diagram (upper) of double J / ψ production via fragmentation, which correspond to collinear LO QCD $g g \longrightarrow g g$ subprocess
- One diagram (lower) with multiple
 gluon radiation in the initial state, which correspond to $g^{*} g^{*} \longrightarrow g^{*}$ subprocess in k_{T}-factorization approach
- Initial gluon cascade can be described by the CCFM evolution equation
- Dotted circles denote the possible channels of partons fragmentation into J / ψ mesons

k_{T}-factorization vs collinear

- Typical diagram (upper) of double J / ψ production via fragmentation, which correspond to collinear LO QCD $g g \longrightarrow c \bar{c}$ subprocess
- Typical diagram (lower) with multiple
 gluon radiation in the initial state, which correspond to $g^{*} g^{*} \longrightarrow c \bar{c}$ subprocess in k_{T}-factorization approach
- Dotted circles denote the possible channels of partons fragmentation into J / ψ mesons

J / ψ production via fragmentation

- We took only LO contributions to the FFs, $D_{g}^{J / \psi}\left({ }^{3} S_{1}^{[8]}\right)$ and $D_{c}^{J / \psi}\left({ }^{3} S_{1}^{[1]}\right)$. Charm fragmentation into octet color states supressed due to color factor.
- LO DGLAP evolution equation $\Rightarrow \mathrm{FFs} D_{c}^{J / \psi}\left(z, \mu^{2}\right)$ and $D_{g}^{J / \psi}\left(z, \mu^{2}\right)$ at the any scale μ^{2}

$$
\frac{d}{d \log \mu^{2}}\binom{D_{c}}{D_{g}}=\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi}\left(\begin{array}{cc}
P_{c c} & P_{g c} \\
P_{c g} & P_{g g}
\end{array}\right) \otimes\binom{D_{c}}{D_{g}}
$$

where $P_{a b}$ standard LO DGLAP splitting function

- Cross section of single J / ψ production via fragmentation can be written:

$$
\sigma(p p \rightarrow J / \psi+X)=\int d z \widehat{\sigma}(p p \rightarrow a b) D_{a / b}^{J / \psi}\left(z, \mu^{2}\right)
$$

Modelling events

We used:

- In k_{T}-factorization:
$\hookrightarrow \mathrm{A} 0$ and JH'2013 set 2 TMD gluon densities for numerical calculations of CS and CO contributions in k_{T}-factorization approach;
\hookrightarrow fragmentation: $g^{*} g^{*} \rightarrow g^{*}$ and $g^{*} g^{*} \rightarrow c \bar{c}$
- In collinear calculations:
\hookrightarrow PDF MMHT2014LO
\hookrightarrow fragmentation: $g g \rightarrow g g$ and $g g \rightarrow c \bar{c}$
- Monte Carlo event generator CASCADE for reconstruction of CCFM initial gluon emissions
- numerical solution of DGLAP evolution of FFs with appropriate LDME's $\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle$ (see [Phys. Rev. D 100, 114021 (2019)])

Analysis similar to ATLAS, CMS

- Selection criteria: $p_{T}(J / \psi)>10 \mathrm{GeV}$ for both produced mesons (such cuts are close to those in ATLAS and CMS analysis)
- Fragm. coll.: collinear calculation in LO
- Fragm. lead.: calculation in framework of k_{T}-factorization approach, where J / ψ mesons are originated from gluon produced in hard subprocess and leading gluon in cascade
- Fragm. comb.: calculation in framework of k_{T}-factorization approach with all combinatorial contributions from cascade gluons
- CS: color singlet J / ψ pair production in framework of k_{T}-factorization approach (box diagrams)

Analysis similar to ATLAS, CMS

- Cascade gluon fragmentations play a dominant role at large invariant masses $m(J / \psi, J / \psi) \geq 25 \mathrm{GeV}$ and $|\Delta y(J / \psi, J / \psi)|>1$ for A0 gluon density
- Correct accounting for these combinatorial contributions can help to fill the discrepancy between NRQCD estimations (including CS and CO contributions) and ATLAS, CMS experimental data at large $m(J / \psi, J / \psi)$

Analysis similar to LHCb

- Selection criteria: $4.5<p_{T}(J / \psi)<10 \mathrm{GeV}$ and $2<y(J / \psi)<4.5$ for both produced mesons
- Cascade gluon fragmentations give a small contribution to the forward J / ψ pair production
- Only CS mechanism and DPS give a significant contribution to the J / ψ production in the forward rapidity region

DPS $\sigma_{\text {eff }}$ extraction from LHCb data

- Double J / ψ production at forward rapidities can be used to determine the DPS $\sigma_{e f f}$.
- We tried to extract $\sigma_{\text {eff }}$ from avaliable LHCb data $\sqrt{s}=7 \mathrm{TeV}$ [Phys. Lett. B707, 52 (2012)] and $\sqrt{s}=13 \mathrm{TeV}$ [JHEP 06, 047 (2017)] by considering the CS and DPS contributions.
- Selection criteria: $p_{T}(J / \psi)<10 \mathrm{GeV}, m(J / \psi, J / \psi)<15 \mathrm{GeV}$ and $2<y(J / \psi)$ < 4.5
- Calculation of DPS

$$
\sigma_{D P S}=\frac{1}{2} \frac{\sigma^{2}(p p \rightarrow J / \psi+X)}{\sigma_{e f f}}
$$

with inclusion of feeddown contribution from radiative χ_{c} and ψ^{\prime}

- $\sigma_{e f f}=17.5 \pm 4.1 \mathrm{mb}$ for A0 gluon density $\sigma_{\text {eff }}=13.8 \pm 0.9 \mathrm{mb}$ for JH '2013 set 2 gluon density
- Results are compatible with many other estimations based on essentially different final
 states.

LHCb data: inclusive

LHCb data: $p_{T}(J / \psi, J / \psi)>1 \mathrm{GeV}$

LHCb data: $p_{T}(J / \psi, J / \psi)>3 \mathrm{GeV}$

LHCb data: $m(J / \psi, J / \psi)$

Summary

- Combinatorial contributions of multiple initial gluon emissions to the J / ψ pair production plays a dominant role at large invariant masses $m(J / \psi, J / \psi) \geq 25$ GeV and $|\Delta y(J / \psi, J / \psi)|>1$
- Correct accounting for these contributions to J / ψ pair production in framework of the k_{T}-factorization approach increases by few times cross section compared with collinear calculations in LO QCD.
- This effect is essential for ATLAS and CMS kinematics, but, in principle, can be neglected for LHCb analysis
- To accurate calculation of double J / ψ production for comparison with recent ATLAS and CMS data it is necessary to include not only the full combinatorial fragmentation contributions, CS box and DPS, but the series of processes with single fragmentation and feeddown contributions from radiative decay of χ_{c} and ψ^{\prime}. This work in progress.
- DPS effective cross section $\sigma_{e f f}=17.5 \pm 4.1 \mathrm{mb}$ and $\sigma_{e f f}=13.8 \pm 0.9 \mathrm{mb}$ (for A0 and JH'2013 set 2 gluon densities correspondingly) extracted from LHCb data on the J / ψ pair mesons production are compatible with many other estimations based on essentially different final states.

Thank you for your attention!

Backup

Single J / ψ production

- The probability for two quarks to form a meson is described by the bound state function $\Psi(q)$ where q momentum of the relative motion $c \bar{c}$. Bound states can be presented as Fock states $n={ }^{2 S+1} L_{J}[a]$ with definite spin S, orbital angular momentum L , total angulr momentum J and color representation a (color singlet (CS) [1] and color octet (CO) [8])
- Total amplitude \mathcal{A} of J / ψ production can be obtained as multiplication of partonic subprocess amplitude $A(q) g^{*} g^{*} \rightarrow c \bar{c}$ with the wave function $\Psi(q)$

$$
\mathcal{A} \sim \int d^{3} q A(q) \Psi^{[n]}(q)=\int d^{3} q\left(\left.A\right|_{q=0} \Psi^{[n]}(q)+\left.q^{\mu}\left(\partial A / \partial q^{\mu}\right)\right|_{q=0} \Psi^{[n]}(q)+\ldots\right)
$$

where first term contributes to S-waves only and vanishes for P-waves. Second term contributes only for P-waves

- LDME's (NME) are long distant nonperturbative matrix elements $\left\langle\mathcal{O}^{J / \psi}[n]\right\rangle$

$$
\begin{aligned}
\int d^{3} q \Psi^{[n]}(q) & \sim\left\langle\mathcal{O}^{J / \psi}\left[{ }^{2 S+1} S_{J}\right]\right\rangle^{1 / 2} \text { for S-waves } \\
\int d^{3} q q^{\mu} \Psi^{[n]}(q) & \sim\left\langle\mathcal{O}^{J / \psi}\left[{ }^{2 S+1} P_{J}\right]\right\rangle^{1 / 2} \text { for P-waves }
\end{aligned}
$$

- Their values are extracted from single prompt J / ψ production data (depends on the TMD PDF choice only)

Single J / ψ production with k_{T}-factorization approach

Fragmentation functions

Single J / ψ production in color octet channel $g \rightarrow^{3} S_{1}^{[8]}$

Analysis similar to ATLAS, CMS

Analysis similar to LHCb

