

THE UNIVERSITY of EDINBURGH

Resummation, Evolution, Factorization 2020

Higgs Centre Workshop

HIGGS CENTRE FOR THEORETICAL PHYSICS

Factorization, evolution and resummation for heavy quarkonium production

Jianwei Qiu Theory Center, Jefferson Lab December 7th, 2020

> Based on works done with Z.-B. Kang, K. Lee, Y.-Q. Ma, G. Nayak, G. Sterman, K. Watanabe, H. Zhang, ...

Outline

QCD, Factorization, Renormalization, and Resummation

Factorization, renormalization and resummation for heavy quarkonium production

□ Factorization, renormalization and resummation beyond the leading power

□ Non-linear evolution, and quarkonium polarization

□ Summary and outlook

QCD – Unprecedented intellectual challenge

Color confinement:

"Cross section" with identified hadron(s) is NOT perturbatively calculable

 $\sigma(S,M_Q,Q_s) ~~{\rm is~NOT~perturbative~no~matter~how~large}S~~{\rm is!}~~With~the~hadronic~scale:~}Q_s\sim\Lambda_{\rm QCD}$

Asymptotic freedom:

Perturbative QCD could work for dynamics at short-distance: 1/Qwith a large momentum transfer: Q and $S \gtrsim Q \gg Q_s$ $\sigma(Q, S, M_Q, Q_s) = \sigma^{\text{LP}}(Q, S, M_Q, Q_s) \times \left[1 + \mathcal{O}\left(\frac{Q_s}{Q}\right)^n + ...\right]$

Hard probe (t ~ 1/Q << fm):</p>

Probability to "catch" the parton!

Factorization – Predictive Power

Factorization – Approximation:

Leading non-perturbative hadronic information is factorized into universal functions Ex: Single identified hadron – lepton-hadron DIS:

Factorization – Predictive power:

Factorized non-perturbative information, e.g., $\phi_f(x, \mu^2)$ is universal, Controllable power corrections, ...

Factorization, Renormalization and Evolution

□ Factorization requires renormalization of nonlocal operators:

□ Matching coefficients and factorization scheme:

$$\begin{split} c_f^{(1)}(x,Q^2/\mu^2) &= \sigma_{\mathrm{DIS-q}}^{(1)}(x,Q^2) - \sigma_{\mathrm{DIS-q}}^{(0)}(x,Q^2,Q_s) \otimes \phi_{q/q}^{(1)}(x,\mu^2,Q_s) \\ &\propto \int_0^{Q^2} \frac{dk_T^2}{k_T^2} - \left[\int_0^\infty \frac{dk_T^2}{k_T^2} + \mathrm{UVCT}(\mu^2) \right] \\ &\longrightarrow \ln(Q^2/\mu^2) \end{split} \qquad \begin{array}{l} \text{Scheme-dependence of } c_f \\ \text{Leading to scheme dependence of extracted PDFs, ...} \end{split}$$

□ Factorization leads to evolution and resummation:

7

$$\frac{d}{d\ln\mu^2} \sigma_{\text{DIS}}^{\text{LP}}(x, Q^2, Q_s) = \sum_f c_f(x, Q^2/\mu^2) \otimes \phi_{f/h}(x, \mu^2, Q_s) = 0$$

$$\stackrel{\longrightarrow}{\longrightarrow} \frac{\partial}{\partial\ln\mu^2} \phi_{f/h}(x, \mu^2) = \sum_i \gamma_{f/i}(x, \alpha_s) \otimes \phi_{i/h}(x, \mu^2) \qquad \begin{array}{c} \text{Solution} \\ = \text{Resc} \\ \end{array}$$

Solution of evolution = Resummation

Heavy quarkonium production

One of the simplest QCD bound states:

Localized color charges (heavy mass), non-relativistic relative motion

Charmonium: $v^2 \approx 0.3$ Bottomonium: $v^2 \approx 0.1$ Well-separated momentum scales – effective theory: P_T
 m_Q PerturbativeHard – Production of $Q\bar{Q}$ [pQCD] m_Qv Non-PerturbativeSoft – Relative Momentum[NRQCD]

Ultrasoft — Binding Energy

[pNRQCD]

Cross sections and observed mass scales:

Non-Perturbative

 $m_Q v^2$.

 $\frac{d\sigma_{AB\to H(P)X}}{dydP_T^2} \qquad \sqrt{S}, \qquad P_T, \qquad M_H,$

PQCD is "expected" to work for the production of heavy quarks Difficulty = Emergence of a quarkonium from a heavy quark pair?

Color singlet model (CSM)

Effectively No parameter:

Campbell, Maltoni, Tramontano (2007), Artoisenet, Lansburg, Maltoni (2007), Artoisenet, et al. (2008)

Issues:

- How reliable is the perturbative expansion?
- ♦ S-wave: large corrections from high orders
- P-wave: Infrared divergent CSM is not complete

Challenges: NLO theory fits – Butenschoen et al.

Challenges: NLO theory fits – Gong et al.

Challenges: NLO theory fits – Chao et al.

Why high orders in NRQCD are so large?

Kang, Qiu and Sterman, 2011

✤ High-order correction receive power enhancement

- Expect no further power enhancement beyond NNLO
- $\Rightarrow [\alpha_s \ln(p_T^2/m_Q^2)]^n$ ruins the perturbation series at sufficiently large p_T

Leading order in α_s -expansion =\= leading power in $1/p_{\tau}$ -expansion! At high p_{τ} fragmentation contribution dominant

Heavy quarkonium polarization

Polarization = input fragmentation functions:

- \diamond Partonic hard parts and evolution kernels are perturbative
- \diamond Insensitive to the properties of produced heavy quarkonia

Projection operators – polarization tensors:

$$\mathcal{P}_L^{\mu\nu}(p) \equiv \mathcal{P}^{\mu\nu}(p) - 2\mathcal{P}_T^{\mu\nu}(p) = \frac{1}{p^2} \left[p^\mu - \frac{p^2}{2p \cdot n} n^\mu \right] \left[p^\nu - \frac{p^2}{2p \cdot n} n^\nu \right]$$

Longitudinally polarized quarkonium

for produced the quarknium moving in +z direction with

$$p^{\mu} = (p^+, p^-, p_{\perp}) = p^+(1, 0, \mathbf{0}_{\perp}) \qquad p^2 = n^2 = 0$$
$$n^{\mu} = (n^+, n^-, n_{\perp}) = (0, 1, \mathbf{0}_{\perp}) \qquad p \cdot n = p^+$$

Ma et al. 2014

QCD factorization + NRQCD factorization

Kang, Qiu and Sterman, 2011

Color singlet as an example:

Different kinematics, different approximation, Dominance of different production channels!

QCD factorization approach when $P_T >> m_Q$

□ Factorization formalism:

Nayak, Qiu, and Sterman, 2005 Kang, Ma, Qiu and Sterman, 2014 , ...

$$d\sigma_{A+B\rightarrow H+X}(p_{T}) = \sum_{f} d\hat{\sigma}_{A+B\rightarrow f+X}(p_{f} = p/z) \otimes D_{H/f}(z, m_{Q})$$

$$+ \sum_{[Q\bar{Q}(\kappa)]} d\hat{\sigma}_{A+B\rightarrow [Q\bar{Q}(\kappa)]+X}(p(1 \pm \zeta)/2z, p(1 \pm \zeta')/2z)$$

$$\otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_{Q})$$

$$+ \mathcal{O}(m_{Q}^{i}/p_{T}^{4})$$
Production of the pairs:
$$\hat{p}_{Q} = \frac{1+\zeta}{2z} \hat{p}, \quad \hat{p}_{\bar{Q}} = \frac{1-\zeta}{2z} \hat{p}$$

$$\diamond \text{ at } 1/m_{Q}: \qquad D_{i\rightarrow H}(z, m_{Q}, \mu_{0})$$

$$\diamond \text{ at } 1/P_{T}: \qquad d\hat{\sigma}_{A+B\rightarrow [Q\bar{Q}(\kappa)]+X}(P_{[Q\bar{Q}]}(\kappa), \mu)$$

$$\diamond \text{ between:}$$

$$[1/m_{Q}, 1/P_{T}] \qquad d\hat{d}_{\ln(\mu)}D_{i\rightarrow H}(z, m_{Q}, \mu) = \dots$$

$$+ \frac{m_{Q}^{2}}{\mu^{2}}\Gamma(z) \otimes D_{[Q\bar{Q}(\kappa)\rightarrow H}(\{z_{i}\}, m_{Q}, \mu))$$

QCD factorization beyond leading power

Beyond the leading power – e+e- as an example:

] Matching coefficients beyond the leading power: $H \rightarrow QQ$

$$d\hat{\sigma}_{e^{+}e^{-} \to Q\bar{Q}}^{(2)}(p_{T}) = d\sigma_{e^{+}e^{-} \to Q\bar{Q}}^{(2)}(p_{T}) - d\sigma_{e^{+}e^{-} \to Q'\bar{Q}'}^{(1)}(p_{T}) \otimes \mathcal{D}_{Q\bar{Q}/Q'\bar{Q}'}^{(1)} - d\sigma_{e^{+}e^{-} \to Q}^{(0)}(p_{T}) \otimes \mathcal{D}_{Q\bar{Q}/Q}^{(2)}$$

$$d2: \quad \propto \int_{0}^{Q^{2}} \frac{dk_{T}^{2}}{k_{T}^{2}} - \left[\int_{0}^{\infty} \frac{dk_{T}^{2}}{k_{T}^{2}} + \text{UVCT}(\mu^{2})\right]$$

$$d3: \quad \propto \int_{0}^{Q^{2}} \frac{dk_{T}^{2}}{(k_{T}^{2})^{n-2}} - \left[\int_{0}^{\infty} \frac{dk_{T}^{2}}{(k_{T}^{2})^{n-2}} + \text{FACT}(\mu^{2})\right]$$

$$d3: \quad \propto \int_{0}^{Q^{2}} \frac{dk_{T}^{2}}{(k_{T}^{2})^{n-2}} - \left[\int_{0}^{\infty} \frac{dk_{T}^{2}}{(k_{T}^{2})^{n-2}} + \text{FACT}(\mu^{2})\right]$$

$$d3: \quad \propto \int_{0}^{Q^{2}} \frac{dk_{T}^{2}}{(k_{T}^{2})^{n-2}} - \left[\int_{0}^{\infty} \frac{dk_{T}^{2}}{(k_{T}^{2})^{n-2}} + \text{FACT}(\mu^{2})\right]$$

Take are of the Pair produced between $1/m_o$ and 1/pT

See arXiv:2006.07375

Evolution of fragmentation functions

□ Independence of the factorization scale:

Kang, Ma, Qiu and Sterman, 2013

$$\diamond$$
 at Leading power in 1/P_T

DGALP evolution

hext-to-leading power in 1/P - New non-linear evolution!

 $\frac{d}{d\ln\mu^2} D_{H/f}(z, m_Q, \mu) = \sum_j \frac{\alpha_s}{2\pi} \gamma_{f \to j}(z) \otimes D_{H/j}(z, m_Q, \mu)$

 $\frac{a}{d\ln(\mu)}\sigma_{A+B\to HX}(P_T) = 0$

$$\frac{d}{d\ln\mu^2} D_{H/f}(z, m_Q, \mu) = \sum_j \frac{\alpha_s}{2\pi} \gamma_{f \to j}(z) \otimes D_{H/j}(z, m_Q, \mu) + \frac{1}{\mu^2} \sum_{[Q\bar{Q}(\kappa)]} \frac{\alpha_s^2}{(2\pi)^2} \Gamma_{f \to [Q\bar{Q}(\kappa)]}(z, \zeta, \zeta') \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q, \mu)$$

$$\frac{d}{d\ln\mu^2}\mathcal{D}_{H/[Q\bar{Q}(c)]}(z,\zeta,\zeta',m_Q,\mu) = \sum_{[Q\bar{Q}(\kappa)]} \frac{\alpha_s}{2\pi} K_{[Q\bar{Q}(c)]\to[Q\bar{Q}(\kappa)]}(z,\zeta,\zeta') \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z,\zeta,\zeta',m_Q,\mu)$$

❑ Evolution kernels are perturbative:

 \diamond Set mass: $m_Q \rightarrow 0$ with a caution

Non-perturbative input distributions

Sensitive to the properties of quarkonium produced: Should, in principle, be extracted from experimental data Large heavy quark mass and clear scale separation: $\mu_0 \sim m_Q \gg m_Q v$ Apply NRQCD to the FFs Nayak, Qiu and Sterman, 2005 \diamond Single parton FFs – valid to two-loops: $D_{g \to J/\psi}(z,\mu_0,m_Q) \to \sum \hat{d}_{g \to [Q\bar{Q}(c)]}(z,\mu_0,m_Q) \langle \mathcal{O}_{[Q\bar{Q}(c)]}(0) \rangle|_{\text{NRQCD}}$ Braaten, Yuan, 1994 $[Q\bar{Q}(c)]$ Ma, 1995, ... Complete LO+NLO for S, P states & NNLO for singlet S state Braaten, Chen, 1997 Braaten, Lee, 2000, Ma, Qiu, Zhang, 2013 \diamond Heavy quark pair FFs – valid to one-loop: $\mathcal{D}_{[Q\bar{Q}(\kappa)]\to J/\psi}(z,\zeta,\zeta',\mu_0,m_Q)\to \sum \hat{d}_{[Q\bar{Q}(\kappa)]\to [Q\bar{Q}(c)]}(z,\zeta,\zeta',\mu_0,m_Q)\langle \mathcal{O}_{[Q\bar{Q}(c)]}(0)\rangle_{\mathrm{NRQCD}}$ $[Q\bar{Q}(c)]$ Kang, Ma, Qiu and Sterman, 2014 Full LO+NLO for S, P states is now available Ma, Qiu, Zhang, 2013 No all-order proof of such factorization yet!

Reduce "many" unknown FFs to a few universal NRQCD matrix elements!

Next-to-leading power fragmentation – Ma et al.

Ma, Qiu, Zhang, 2013

Heavy quark pair FFs:

Next-to-leading power fragmentation – Ma et al.

$$d\sigma_{A+B\to H+X}(p_T) = \sum_f d\hat{\sigma}_{A+B\to f+X}(p_f = p/z) \otimes D_{H/f}(z, m_Q)$$
$$+ \sum_{[Q\bar{Q}(\kappa)]} d\hat{\sigma}_{A+B\to [Q\bar{Q}(\kappa)]+X}(p(1\pm\zeta)/2z, p(1\pm\zeta')/2z)$$
$$\otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q)$$

Channel-by-channel comparison:

Next-to-leading power fragmentation – Ma et al.

$$d\sigma_{A+B\to H+X}(p_T) = \sum_f d\hat{\sigma}_{A+B\to f+X}(p_f = p/z) \otimes D_{H/f}(z, m_Q)$$
$$+ \sum_{[Q\bar{Q}(\kappa)]} d\hat{\sigma}_{A+B\to [Q\bar{Q}(\kappa)]+X}(p(1\pm\zeta)/2z, p(1\pm\zeta')/2z)$$
$$\otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q)$$

LP vs. NLP (both LO):

Matching between different approaches

Expectation:

Kang, Ma, Qiu and Sterman, 2014

Summary

- It has been over 40 years since the discovery of J/Ψ, but, still not completely sure about its production mechanism
- **I** NRQCD factorization is expected to work for $P_T \sim Q$, no all-order proof

 \Box QCD factorization is shown to work for both LP and NLP at high P_T

- Resummation of logarithms from 2m_Q to P_T
- Non-linear evolution equation of single parton fragmentation function is needed for a consistent accuracy at Next-to-leading-power
- Matching between high P_T to P_T ~ m_Q
- Challenge for low P_T region or near the threshold

Nuclear medium could be a good "filter" or a fermi-scale "detector" for studying the emergence of a quarkonium from a havey quark pair

Not talked here

Thank you!