Resummation of fiducial power corrections in the Drell-Yan transverse momentum distribution

Markus Ebert

Max-Planck-Institut für Physik

Based on [ME, J. Michel, I. Stewart, F. Tackmann; 2006.11382]

REF 2020

07.12.2020

< A >

FÜR PHYSIK

Motivation

q_T spectrum in inclusive Drell-Yan:

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} &\sim \alpha_s \bigg[\frac{1}{q_T^2} (L + \cdots) + (L + \cdots) + \mathcal{O}(q_T^2) \bigg] \\ &+ \alpha_s^2 \bigg[\frac{1}{q_T^2} (L^3 + \cdots) + (L^3 + \cdots) + \mathcal{O}(q_T^2) \bigg] \\ &+ \cdots \end{aligned}$$
where $L = \ln(Q^2/q_T^2)$

- Singular terms $\sim 1/q_T^2$ fully predicted by TMD factorization
- Subleading terms suppressed as $\mathcal{O}(q_T^2/Q^2)$
 - Calculated at NLO in [ME, Moult, Stewart, Tackmann, Vita, Zhu '18]
 - Observed numerically at NNLO [see e.g. MATRIX]

q_T spectrum in fiducial Drell-Yan:

- Subleading terms only suppressed as $\mathcal{O}(q_T/Q)$ [ME, Tackmann '19]
- ٠ Can be included through matching to fixed order
- Can they also be resummed?

q_T factorization with fiducial power corrections

Inclusive q_T factorization for Drell-Yan

Consider $p(P_a^{\mu})p(P_b^{\mu}) \to Z/\gamma^*(q^{\mu}) \to \ell^-(p_1^{\mu})\ell^+(p_2^{\mu})$:

- Factorize matrix element: $\mathcal{M}_{pp \to V+X} = \mathcal{M}^{\mu}_{V \to L} \langle X | J_{V\mu} | pp \rangle$
 - See Georgios' talk for QCD+QED effects
- Factorize cross section accordingly:

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4 q} = L_{\mu
u}(q) W^{\mu
u}(q,P_a,P_b)$$

Inclusive Drell-Yan:

L_{μν} only depends on q:

$$L_{\mu
u}(q)=\left(g_{\mu
u}-rac{q_{\mu}q_{
u}}{q^2}
ight)L(q^2)$$

Factorized cross section simplifies to

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4 q} = L(q^2) W(q,P_a,P_b)\,, \hspace{1em} W = \left(g_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight) W^{\mu
u}$$

- Leading-power expansion of W recovers standard q_T factorization
- Inclusive W only depends on

$$q^2 \equiv Q^2 \,, \ \ P_{a,b} \!\cdot\! q = E_{
m cm} \sqrt{Q^2 + q_T^2} \, e^{\pm Y}$$

lntuitively: azimuthal symmetry implies quadratic corrections in q_T^2 only

< A >

Fiducial q_T factorization for Drell-Yan

Consider $p(P_a^{\mu})p(P_b^{\mu}) \to Z/\gamma^*(q^{\mu}) \to \ell^-(p_1^{\mu})\ell^+(p_2^{\mu})$:

- Allow for generic fiducial cuts ⊖
- Factorize cross section accordingly:

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4 q}(\Theta) = L_{\mu
u}(q,\Theta) W^{\mu
u}(q,P_a,P_b)$$

- $W^{\mu\nu}$ contains nine real independent structures:
 - Current conservation: $q_{\mu}W^{\mu\nu} = q_{\nu}W^{\mu\nu} = 0$ Hermiticy: $W^{*\mu\nu} = W^{\nu\mu}$
- Decompose $W^{\mu\nu}$ accordingly:

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4 q}(\Theta) = \sum_{i=-1}^7 (L\cdot K_i)(W\cdot K_i) \equiv \sum_{i=-1}^7 L_i(q,\Theta) W_i(q,P_a,P_b)$$

- Decomposition independent of leptonic final state
- Strategy: construct K_i such that W_i can be conveniently expanded in $q_T \ll Q$
 - Projection onto polarization vectors in vector boson rest frame [Mirkes '92]

<u>Power corrections to fiducial q_T spectrum</u>

Leading power:

$$rac{\mathrm{d} \sigma^{(0)}}{\mathrm{d}^4 q} = \sum_{i=-1,4} L_i^{(0)} W_i^{(0)}$$

- Next-to-leading power:
- Linear corrections arise entirely from leptonic tensor

W_i	Scaling	$L_i^{(0)}$	$g_i(heta,arphi)$
W_{-1}	$\sim \lambda^0$	\checkmark	$1 + \cos^2 heta$
W_4	$\sim \lambda^0$	\checkmark	$\cos heta$
W_2	$\sim \lambda^0$		$\sin^2 heta\cos(2arphi)$
W_5	$\sim \lambda^0$		$\sin^2 heta\sin(2arphi)$
W_0	$\sim \lambda^2$	\checkmark	$1 - \cos^2 \theta$
W_1	$\sim \lambda^1$		$\sin(2 heta)\cosarphi$
W_3	$\sim \lambda^{\geq 1}$		$\sin heta\cosarphi$
W_6	$\sim \lambda^{\geq 1}$		$\sin(2 heta)\sinarphi$
W_7	$\sim \lambda^{\geq 1}$		$\sin heta\sinarphi$

- $W_{2,5}$ (Boer-Mulders effect) are suppressed as $\mathcal{O}(\lambda^2)$ in collinear factorization
- W_{-1,4} is standard TMD factorization:

$$W_i^{(0)} = \sum_{a,b} H_{i\,ab} \int \mathrm{d}^2 ec{b}_T \, e^{\mathrm{i}ec{b}_T \cdot ec{q}_T} f_a(x_a,ec{b}_T) f_b(x_b,ec{b}_T)$$

• Can extend LP factorization / resummation to capture all linear corrections:

$$\frac{\mathrm{d}\sigma^{(0+1)}}{\mathrm{d}^4 q} = \sum_{i=-1,2,4,5} (L_i^{(0)} + L_i^{(1)}) W_i^{(0)}$$

< A >

Power corrections to fiducial q_T spectrum

• Leading power:

$$rac{{
m d}\sigma^{(0)}}{{
m d}^4 q} = \sum_{i=-1,4} L_i^{(0)} W_i^{(0)}$$

• Next-to-leading power:

 $\frac{\mathrm{d} \sigma^{(1)}}{\mathrm{d}^4 q} = \underset{i=-1,2,4,5}{\sum} L_i^{(1)} W_i^{(0)}$

• Linear corrections arise *entirely* from leptonic tensor

W_i	Scaling	$L_i^{(0)}$	$g_i(heta,arphi)$
W_{-1}	$\sim \lambda^0$	\checkmark	$1 + \cos^2 heta$
W_4	$\sim \lambda^0$	\checkmark	$\cos heta$
W_2	$\sim \lambda^0$		$\sin^2 heta\cos(2arphi)$
W_5	$\sim \lambda^0$		$\sin^2 heta\sin(2arphi)$
W_0	$\sim \lambda^2$	\checkmark	$1 - \cos^2 \theta$
W_1	$\sim \lambda^1$		$\sin(2 heta)\cosarphi$
W_3	$\sim \lambda^{\geq 1}$		$\sin heta\cosarphi$
W_6	$\sim \lambda^{\geq 1}$		$\sin(2 heta)\sinarphi$
W_7	$\sim \lambda^{\geq 1}$		$\sin heta\sinarphi$

Can extend LP factorization / resummation to capture all fiducial corrections:

$$\frac{\mathrm{d}\sigma^{(0+L)}}{\mathrm{d}^4 q} = \sum_{i=-1,2,4,5} L_i W_i^{(0)}$$

Exact L_i induce $\mathcal{O}(\lambda^2)$ correction depending on the tensor decomposition

In practice more convenient (and often more reasonable) than $d\sigma^{(0+1)}$

< A >

Power corrections to fiducial q_T spectrum

Verify numerically:

Exact L_i induce $\mathcal{O}(\lambda^2)$ correction depending on the tensor decomposition

In practice more convenient (and often more reasonable) than $d\sigma^{(0+1)}$

Application to leptonic observables

p_T^ℓ spectrum in $pp o W^+ o \ell^+ u_\ell$

Naive LP factorization:

$$rac{{
m d}\sigma^{(0)}}{{
m d}^4 q\,{
m d}p_T^\ell} = \sum_{i=-1} L_i^{(0)}(q,p_T^\ell)\, W_i^{(0)}(q,P_a,P_b) \; ,$$

- LP kinematics bounds $p_T^\ell \leq Q/2$
 - $\sigma^{(0)}$ illdefined for $\left| p_T^\ell rac{Q}{2}
 ight| \lesssim rac{q_T}{2}$

- To obtain correct singular results as $p_T^\ell \sim Q/2$: need to simultaneously expand L_i in $q_T \sim |p_T^\ell - Q/2| \ll Q$
- In practice: more convenient to keep leptonic tensor exact

$$\frac{\mathrm{d}\sigma^{(0+L)}}{\mathrm{d}^4 q \, \mathrm{d}p_T^\ell} = \sum_{i=-1,2,4,5} L_i W_i^{(0)}$$

- Avoids different expansions for $p_T^\ell \sim Q/2$ and $p_T^\ell \ll Q/2$
- Required in general when measurement induces additional small scale

p_T^ℓ spectrum with leptonic power corrections

Fixed order:

Resummed with leptonic corrections:

- ullet Fixed order clearly breaks down at $p_T^\ell pprox m_W/2$
 - Perturbative convergence lost in peak region
- Cured by including leptonic corrections in $\frac{d\sigma^{(0+L)}}{d^4qdp_T^\ell}$
 - Good perturbative convergence in peak region

< **∂** >

- [Balazs, Qiu, Yuan '95; Ellis, Ross, Veseli '97; Guzzi, Nadolsky, Wang '13] (→ RESBOS)
 [Scimemi, Vladimirov '18, Gutierrez-Reyes, Leal-Gomez, Scimemi '20] (→ Artemide)
 - obtain \vec{q}_T and p_T^{ℓ} at NNLL^(0+L) / N³LL^(0+L)
 - implement exact lepton kinematics in Collins-Soper frame
 - no formal justification / discussion of ambiguities of this choice
- [Catani, de Florian, Ferrera, Grazzini '15; Camarda et al '19] (→ DYRes, DYTurbo)
 [Becher, Neumann' 20] (see Tobias' talk) (→ CuTe-MCFM)
 - obtain \vec{q}_T and p_T^{ℓ} at NNLL^(0+L) / N³LL^(0+L)
 - boost event to split total \vec{q}_T among incoming partons
 - [Catani et al '15]: ambiguity from this choice is considered a $\mathcal{O}(q_T/Q)$ effect
- [Monni, Re, Torrielli '17; Bizon et al '17 '18] (→ RadISH)
 - obtain \vec{q}_T at N³LL⁽⁰⁾ without recoil
 - linear corrections from fixed-order matching (not applicable for p_T^ℓ)
- [This work] (→ SCETlib)
 - Formal justification of uniqueness of linear $\mathcal{O}(q_T/Q)$ corrections
 - First results of p_T^{ℓ} at N³LL^(0+L) including fiducial corrections

Comparison to data

- Comparison to CMS 13 TeV measurement [1909.04133]
- See [2006.11382] for comparison to ATLAS 8 TeV measurement [1512.02192]
- See [2006.11382] for results for ϕ^*

Drell-Yan q_T spectrum

Resummed at leading power:

Resummed with fiducial corrections:

- Good agreement with data at N³LL+NNLO₀, except in nonperturbative regime $q_T \lesssim 1 \text{ GeV}$
- Perturbative uncertainties greatly reduced at higher orders
- Perturbative convergence further improves with inclusion of fiducial corrections

Drell-Yan q_T spectrum

Ratio to central N³LL⁽⁰⁾: Ratio to central N³LL^(0+L): 20208 1 [%] $pp \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^- (13 \text{ TeV})$ $pp \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^- (13 \text{ TeV})$ 15-15 $CMS (35.9 \, \text{fb}^{-1})$ 76 < $O < 106 \, \text{GeV}$ + CMS (35.9 fb⁻¹) 76 < $Q \le 106$ GeV ratio to best central – atio to best central – 10 arXiv:1909.04133 10 arXiv 1909 04133 5 0 -5 -5SCETLIB -10-10SCETLIE $N^{3}LL^{(0)} + NNLO_{0}$ $N^{3}LL^{(0+L)} + NNLO_{0}$ -15-15 $NNLL^{(0+L)} + NLO_0$ NNLL⁽⁰⁾+NLO₀ -20-20 0 35 15 30 35 40 $q_T \, [\text{GeV}]$ $q_T \, [\text{GeV}]$

- Good agreement with data at N³LL+NNLO₀, except in nonperturbative regime $q_T \lesssim 1 \text{ GeV}$
- Perturbative uncertainties greatly reduced at higher orders
- Perturbative convergence further improves with inclusion of fiducial corrections

Drell-Yan q_T spectrum

Ratio to central N³LL⁽⁰⁾:

Ratio to central N³LL^(0+L):

Markus Ebert (MPI)

07.12.2020 8/9

Conclusion

< **∂** >

Conclusion

- Showed that linear power corrections can be uniquely included in q_T factorization
 - Proof combines tensor decomposition in a vector boson rest frame with power counting in SCET
- Straightforward extension of LP factorization / resummation:

$$rac{\mathrm{d} \sigma^{(0+L)}}{\mathrm{d}^4 q}(\Theta) = \sum_{i=-1,2,4,5} L_i(q,\Theta) W_i^{(0)}(q,P_a,P_b)$$

• Also holds for leptonic fiducial power corrections, such as p_T^{ℓ} near the peak:

- Yields the actual leading power result in such singular regions
- Corollary: can be used to improve q_T subtractions (\rightarrow see backup)
 - Necessary for observables such as p_T^{ℓ} near the peak
- Showed the numerical impact in data comparison for q_T and ϕ^*
 - Greatly improves convergence and agreement with data
 - Significantly reduces impact of fixed-order matching

< A >

Conclusion

- Showed that linear power corrections can be uniquely included in q_T factorization
 - Proof combines tensor decomposition in a vector boson rest frame with power counting in SCET
- Straightforward extension of LP factorization / resummation:

$$rac{\mathrm{d} \sigma^{(0+L)}}{\mathrm{d}^4 q}(\Theta) = \sum_{i=-1,2,4,5} L_i(q,\Theta) W_i^{(0)}(q,P_a,P_b)$$

• Also holds for leptonic fiducial power corrections, such as p_T^{ℓ} near the peak:

- Yields the actual leading power result in such singular regions
- Corollary: can be used to improve q_T subtractions (\rightarrow see backup)
 - Necessary for observables such as p_T^{ℓ} near the peak
- Showed the numerical impact in data comparison for q_T and ϕ^*
 - Greatly improves convergence and agreement with data
 - Significantly reduces impact of fixed-order matching

Thank you for your attention!

< A >

Backup slides

< **∂** >

Effect of (un)resummed fiducial corrections

< 67 ►

Hadronic tensor decomposition

- Key idea: decompose hadronic tensor using vector boson polarization [Mirkes '92] $W_{\lambda\lambda'} = \epsilon^{\mu}_{\lambda} \epsilon^{*\nu}_{\lambda'} W_{\mu\nu}$
- Decomposition most natural in vector boson rest frame $(q^{\mu}=(Q,0,0,0))$

$$\epsilon^\mu_\pm = rac{1}{\sqrt{2}} (x^\mu \mp \mathrm{i} y^\mu) \,, \quad \epsilon^\mu_0 = z^\mu$$

Our rest frame corresponds to the Collins-Soper (CS) frame

. . .

• Define hadronic tensor structures through suitable projections, e.g.

$$egin{array}{lll} W_{-1} &= W_{++} + W_{--} &= (x_\mu x_
u + y_\mu y_
u) W^{\mu
u} \ W_0 &= 2 W_{00} &= z_\mu z_
u W^{\mu
u} \end{array}$$

• Can now systematically expand the W_i in $\lambda \sim q_T/Q$

- Projectors admit straightforward expansion in q_T
- Hadronic tensor W_{µν} can be expanded in SCET

• Likewise: expand leptonic coefficients $L_i(q, \Theta) = P_i^{\mu\nu} L_{\mu\nu}(q, \Theta)$

Markus Ebert (MPI)

< A >

Power expansion of the hadronic tensor

Expansion of $W_{\mu\nu}$:

- Match QCD current onto SCET: $J_V^{\mu}(x) \sim \gamma_{\perp}^{\mu} C_V^{(0)}(q^2) \mathcal{O}_{q\bar{q}}^{(0)}(x) \left[1 + \mathcal{O}(\lambda)\right]$
- Hadronic tensor at leading-power: $W^{\mu\nu} \propto g_{\perp}^{\mu\nu} W^{(0)} \left[1 + \mathcal{O}(\lambda)\right]$
- No hard operators contribute at O(λ) to inclusive spectrum [Feige, Kolodrubetz, Moult, Stewart '17; Moult, Stewart, Vita '19]

Power expansion of the hadronic tensor

Expansion of $W_{\mu\nu}$:

- Match QCD current onto SCET: J_V^{μ}
- Hadronic tensor at leading-power: $W^{\mu\nu}$

$$J_V^\mu(x)\sim \gamma_\perp^\mu C_V^{(0)}(q^2)\mathcal{O}_{qar q}^{(0)}(x)\left[1+\mathcal{O}(\lambda)
ight]$$

$$W^{\mu
u} \propto g_{\perp}^{\mu
u} W^{(0)} \left[1 + \mathcal{O}(\lambda)
ight]$$

 No hard operators contribute at O(λ) to inclusive spectrum [Feige, Kolodrubetz, Moult, Stewart '17; Moult, Stewart, Vita '19]

Expansion of polarization vectors:

- Standard lightcone directions: $n_a^\mu = (1,0,0,1)\,, \ \ n_b^\mu = (1,0,0,-1)$
- Rest frame unit vectors:

$$x^{\mu} = n^{\mu}_{\perp} + rac{q_T}{Q} rac{n^{\mu}_a + n^{\mu}_b}{2} + \mathcal{O}(\lambda^2)\,, \ \ y^{\mu} = \epsilon^{\mu
u}_{\perp} n_{\perp
u}\,, \ \ \ z^{\mu} = rac{n^{\mu}_a - n^{\mu}_b}{2}$$

Power expansion of the hadronic tensor

Expansion of $W_{\mu\nu}$:

- Match QCD current onto SCET: J_V^{μ} (see
- Hadronic tensor at leading-power: $W^{\mu
 u} \propto$

$$J_V^{\mu}(x) \sim \gamma_{\perp}^{\mu} C_V^{(0)}(q^2) \mathcal{O}_{q\bar{q}}^{(0)}(x) \left[1 + \mathcal{O}(\lambda)\right]$$

$$W^{\mu
u} \propto g_{\perp}^{\mu
u} W^{(0)} \left[1 + \mathcal{O}(\lambda)
ight]$$

 No hard operators contribute at O(λ) to inclusive spectrum [Feige, Kolodrubetz, Moult, Stewart '17; Moult, Stewart, Vita '19]

Expansion of polarization vectors:

- Standard lightcone directions: $n_a^\mu = (1,0,0,1)\,, \ \ n_b^\mu = (1,0,0,-1)$
- Rest frame unit vectors:

$$x^{\mu} = n^{\mu}_{\perp} + rac{q_T}{Q} rac{n^{\mu}_a + n^{\mu}_b}{2} + \mathcal{O}(\lambda^2)\,, \ \ y^{\mu} = \epsilon^{\mu
u}_{\perp} n_{\perp
u}\,, \ \ z^{\mu} = rac{n^{\mu}_a - n^{\mu}_b}{2}$$

Expansion of structure functions:

$$egin{aligned} W_{-1} &= (x^{\mu}x^{
u} + y^{\mu}y^{
u})W_{\mu
u} = g_{\perp}^{\mu
u}g_{\perp\,\mu
u}W^{(0)} + \cdots &= \mathcal{O}(\lambda^{-2}) \ W_{0} &= z^{\mu}z^{
u}W_{\mu
u} &\sim n^{\mu}_{a,b}n^{
u}_{a,b}g_{\perp\mu
u}W^{(0)} + \cdots &= \mathcal{O}(\lambda^{0}) \end{aligned}$$

Easy to obtain (bound on) scaling of all W_i in this fashion

Markus Ebert (MPI)

Full list of hadronic structure functions

- Recall: $W_{\lambda\lambda'} = \epsilon^{\mu}_{\lambda} \epsilon^{*\nu}_{\lambda'} W_{\mu\nu}$
- Complete list of hadronic structure functions:

$$\begin{split} W_{-1} &= W_{++} + W_{--} &= (x_{\mu}x_{\nu} + y_{\mu}y_{\nu}) \, W^{\mu\nu} \\ W_{0} &= 2W_{00} &= 2 \, z_{\mu}z_{\nu} \, W^{\mu\nu} \\ W_{1} &= -\frac{1}{\sqrt{2}} (W_{+0} + W_{0+} + W_{-0} + W_{0-}) &= -(x_{\mu}z_{\nu} + x_{\nu}z_{\mu}) \, W^{\mu\nu} \\ W_{2} &= -2(W_{+-} + W_{-+}) &= 2 \, (y_{\mu}y_{\nu} - x_{\mu}x_{\nu}) \, W^{\mu\nu} \\ W_{3} &= -\sqrt{2} (W_{+0} + W_{0+} - W_{-0} - W_{0-}) &= 2 \mathrm{i} \, (y_{\mu}z_{\nu} - y_{\nu}z_{\mu}) \, W^{\mu\nu} \\ W_{4} &= 2(W_{++} - W_{--}) &= 2 \mathrm{i} \, (x_{\mu}y_{\nu} - x_{\nu}y_{\mu}) \, W^{\mu\nu} \\ W_{5} &= -\mathrm{i} (W_{+-} - W_{-+}) &= -(x_{\mu}y_{\nu} + x_{\nu}y_{\mu}) \, W^{\mu\nu} \\ W_{6} &= -\frac{\mathrm{i}}{\sqrt{2}} (W_{+0} - W_{0+} - W_{-0} + W_{0-}) &= -(y_{\mu}z_{\nu} + y_{\nu}z_{\mu}) \, W^{\mu\nu} \\ W_{7} &= -\mathrm{i}\sqrt{2} (W_{+0} - W_{0+} + W_{-0} - W_{0-}) &= -2\mathrm{i} \, (x_{\mu}z_{\nu} - x_{\nu}z_{\mu}) \, W^{\mu\nu} \end{split}$$

1

Full list of hadronic structure functions

Recall:

$$W_{\lambda\lambda'} = \epsilon^{\mu}_{\lambda} \epsilon^{*
u}_{\lambda'} W_{\mu
u}$$

Complete list of hadronic structure functions:

$W_{-1} =$					$=\left(x_{\mu}x_{ u}+y_{\mu}y_{ u} ight) W^{\mu u}$
$W_0 =$					$=2z_\mu z_ uW^{\mu u}$
TT 7	W_i	Scaling	$\mid L_i^{(0)}$	$g_i(heta,arphi)$	
$W_1 =$	W_{-1}	$\sim \lambda^0$	\checkmark	$1 + \cos^2 heta$	$= -(x_\mu z_\nu + x_\nu z_\mu) W^{\mu\nu}$
117	W_4	$\sim \lambda^0$	\checkmark	$\cos heta$	$2(\dots,\dots,\dots,\dots,\dots,\dots)$ $\mathbf{H}^{\tau}\mu^{\nu}$
$W_2 =$	W_2	$\sim \lambda^0$		$\sin^2 heta\cos(2arphi)$	$\equiv 2\left(y_{\mu}y_{ u}-x_{\mu}x_{ u} ight)W^{+}$
$W_3 =$	W_5	$\sim \lambda^0$		$\sin^2 heta\sin(2arphi)$	$= 2 \mathrm{i} \left(y_{\mu} z_{ u} - y_{ u} z_{\mu} ight) W^{\mu u}$
117	W_0	$\sim\lambda^2$	\checkmark	$1 - \cos^2 \theta$	(0 - 1) = 0 +
$w_4 =$	W_1	$\sim \lambda^1$		$\sin(2 heta)\cosarphi$	\equiv 21 $(x_\mu y_ u - x_ u y_\mu)$ W \cdot
$W_5 =$	W_3	$ \ \sim \lambda^{\geq 1}$		$\sin heta\cosarphi$	$=-(x_\mu y_ u+x_ u y_\mu)W^{\mu u}$
	W_6	$\sim \lambda^{\geq 1}$		$\sin(2 heta)\sinarphi$	
$W_6 =$	W_7	$\sim \lambda^{\geq 1}$		$\sin heta\sinarphi$	$= -(y_\mu z_ u + y_ u z_\mu) W^{\mu u}$
$W_7 =$					$= -2{ m i}\left(x_{\mu}z_{ u}-x_{ u}z_{\mu} ight)W^{\mu u}$

Markus Ebert (MPI)

Power expansion of the leptonic tensor

• Consider $p(P_a^{\mu})p(P_b^{\mu}) \rightarrow Z/\gamma^*(q^{\mu}) \rightarrow \ell^-(p_1^{\mu})\ell^+(p_1^{\mu})$

• Kinematic structure of leptonic tensor:

 $L_{\mu
u}(p_1,p_2) \propto L_+(q^2) \left(p_1^{\mu} p_2^{
u} + p_1^{
u} p_2^{\mu} - g^{\mu
u} p_1 \cdot p_2 \right) + \mathrm{i} L_-(q^2) \, \epsilon^{\mu
u
ho\sigma} p_{1
ho} p_{2\sigma}$

Contains a parity-even (L₊) and parity-odd (L₋) component

Parameterize p^μ_{1,2} in terms of CS angles θ, φ and project:

$$L_{i}(q,\Theta) = \frac{P_{i}^{\mu\nu}}{L_{\mu\nu}} \propto L_{\pm(i)}(q^{2}) \int_{-1}^{1} \mathrm{d}\cos\theta \int_{0}^{2\pi} \mathrm{d}\varphi \, g_{i}(\theta,\varphi) \, \Theta(q,\theta,\varphi)$$

• Projection onto $P_i^{\mu\nu}$ encoded in spherical harmonics $g_i(\theta, \varphi)$

- Expansion of $L_i(q,\Theta)$ in $q_T \ll Q$ depends on observable Θ

 $\Theta(q, heta,arphi)=\Theta^{(0)}(q, heta)ig[1+\mathcal{O}(\lambda)]$

All L_i except for i = -1, 0, 4 average out

q_T subtraction with fiducial corrections

Inclusive cross section with cuts / observables X:

$$egin{aligned} &\sigma(X) = \pmb{\sigma}^{ extsub}(\pmb{X},\pmb{q}^{ extsub}_T) + \int_{\pmb{q}^{ extsub}_T}^\infty \mathrm{d} q_T \ rac{\mathrm{d} \sigma(X)}{\mathrm{d} q_T} + \Delta \sigma(X,\pmb{q}^{ extsub}_T) \ &\Delta \sigma(X,\pmb{q}^{ extsub}_T) = \int_0^{\pmb{q}^{ extsub}_T} \mathrm{d} q_T \ rac{\mathrm{d} \sigma(X)}{\mathrm{d} q_T} - \pmb{\sigma}^{ extsub}(\pmb{X},\pmb{q}^{ extsub}_T) \end{aligned}$$

 $ullet \ \sigma^{
m sub}$ contains full singular limit as $q_T
ightarrow 0$

- Common choice: $\sigma^{\text{sub}}(X, q_T^{\text{cut}}) = \sigma^{(0)}(X, q_T^{\text{cut}})$
 - For inclusive processes: $\Delta \sigma \sim \mathcal{O}(q_T^2/Q^2)$
 - With fiducial cuts:

 $\Delta \sigma \sim \mathcal{O}(q_T/Q_{\perp}) \ \Delta \sigma \sim \mathcal{O}(q_T/Q_{\perp})$

- In singular regions of phase space: $\Delta \sigma \sim \mathcal{O}(1)$
- Enhanced corrections can be trivially avoided by choosing

$$\sigma^{\rm sub}(X, q_T^{\rm cut}) = \sigma^{(0+L)}(X, q_T^{\rm cut})$$

q_T subtraction for p_T^ℓ

p_T^ℓ spectrum for fixed $q_T^{ ext{cut}}$:

 q_T^{cut} dependence of fixed p_T^ℓ bin:

Markus Ebert (MPI)

07.12.2020 8/10

q_T subtraction for Drell-Yan with (a)symmetric cuts

q_T spectrum for different cuts on harder (softer) lepton:

Markus Ebert (MPI)

< 67 ►

q_T subtraction for Drell-Yan with (a)symmetric cuts

 q_T^{cut} dependence of total cross section for different cuts on harder (softer) lepton:

