QCD+QED q_{T} factorization for W / Z production and decay.

Georgios Billis
DESY Hamburg

Work in collaboration with J. Michel, F. Tackmann [in preparation]

Resummation, Evolution, Factorization 2020

Motivation for $p p \rightarrow Z / W \rightarrow L+X$

- Experimental measurement of $\mathrm{d} \sigma / \mathrm{d} p_{T}^{Z}$ yield $\lesssim 0.5 \%$ uncertainty
- Thorough understanding of Z is necessary for analyses related to M_{W} measurement [ATLAS, 1701.07240]
- Also, small $p_{T}^{W}<40 \mathrm{GeV}$ region is relevant for M_{W} determination

[CMS 1909.04133]
- QCD resummation for p_{T} known to high order \Rightarrow See talks by Markus and Tobias.
- It is time to start thinking about often neglected contributions like QED

Overview of QED effects.

How much QCD + QED complicates things?

- Pertubative quantities $\mathcal{F}=\sum \mathcal{F}^{(n, m)} \boldsymbol{\alpha}_{s}^{n} \boldsymbol{\alpha}_{e}^{m}$
- Coupled $\boldsymbol{\beta}$ functions
- $\alpha_{s}, \alpha_{e} \&$ RGE running is affected [GB, F.J. Tackmann, J. Talbert; '19]

Overview of QED effects.

How much QCD + QED complicates things?

- Pertubative quantities $\mathcal{F}=\sum \mathcal{F}^{(n, m)} \boldsymbol{\alpha}_{s}^{n} \alpha_{e}^{m}$
- Coupled $\boldsymbol{\beta}$ functions
- $\alpha_{s}, \alpha_{e} \&$ RGE running is affected [GB, F.J. Tackmann, J. Talbert; '19]
- Quarks and leptons interact with each other via γ

Intermediate - Final (FI)

Initial - Intermediate (InI)

Initial - Final
(IFI)

- Cannot separately investigate radiative corrections in $W_{\mu \nu}$ and $L^{\mu \nu}$
- q_{T} factorization is broken \rightarrow is this the end of it?

Heavy Vector Effective Theory (HVET).

- Work in the vicinity of the $V=Z, W$ resonance

$$
\frac{P^{2}-M_{V}^{2}}{M_{V}} \sim \Gamma_{V} \ll Q \sim M_{V}
$$

- Unstable particle EFT [Beneke, Chapovsky, Signer, Zanderighi; '04]
$M_{V} \uparrow=\boldsymbol{H}$
- Hard modes $\quad \sim \mathcal{O}\left(M_{V}\right)$
- Soft modes $\sim\left(\Gamma_{V}, \Gamma_{V}, \Gamma_{V}\right)$
- Collinear modes $\sim\left(M_{V}, \Gamma_{V}, \sqrt{M_{V} \Gamma_{V}}\right)$
- Like HQET but with a heavy vector boson V_{v}^{μ} instead of Q_{v}

Heavy Vector Effective Theory (HVET).

Decompose vector boson momenta in label and residual

$$
\begin{gathered}
P^{\mu}=M_{V} v^{\mu}+k^{\mu} \\
\frac{1}{P^{2}-M_{V}^{2}+\mathrm{i} M_{V} \Gamma_{V}} \sim \frac{1}{2 M_{V}} \frac{1}{v \cdot k+\mathrm{i} \Gamma_{V} / 2}
\end{gathered}
$$

- Interactions with only $k \sim \mathcal{O}\left(\Gamma_{V}\right)$ keep V near mass shell

$$
\begin{aligned}
\mathcal{L}_{\mathrm{HVET}} & =2 M_{V} V_{v}^{\mu \dagger}\left(v \cdot D_{s}-\frac{\Delta}{2}\right) V_{\mu}^{v} \\
\mathcal{L}_{\mathrm{EFT}} & =\mathcal{L}_{\mathrm{HVET}}+\mathcal{L}_{s}^{\mathrm{QED}}+\mathcal{L}_{\mathrm{SCET}} \\
V_{\mu}^{v}(x) & =e^{\mathrm{i} M_{V} v \cdot x}\left(-g_{\mu \nu}+v_{\mu} v_{\nu}\right) V^{\nu}(x)
\end{aligned}
$$

- $\operatorname{Im} \Delta=-\Gamma_{V}$ but otherwise equivalent to the residual mass in HQET

Protofactorization.

- Full theory considerations for a generic measurement \mathcal{O}

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}} \sim \sum_{X} \int & \mathrm{~d} \Phi_{L, X} \int \mathrm{~d}^{4} x \mathrm{~d}^{4} y \delta^{(4)}\left(p_{a}+p_{b}-p_{1}-p_{2}-p_{X}\right) \\
& \times\langle p p| \overline{\mathrm{T}}\left[J_{H}^{\dagger}(0) J_{L}(y)\right] \hat{\mathcal{O}}|L X\rangle\langle L X| \mathrm{T}\left[J_{L}^{\dagger}(x) J_{H}(0)\right]|p p\rangle \\
\sim \int & \mathrm{d}^{4} x \mathrm{~d}^{4} y \mathrm{~d}^{4} z\langle p p| \overline{\mathrm{T}}\left[J_{H}^{\dagger}(z) J_{L}(y+z)\right] \hat{\mathcal{O}} \mathrm{T}\left[J_{L}^{\dagger}(x) J_{H}(0)\right]|p p\rangle
\end{aligned}
$$

Cannot disentangle J_{H} and J_{L}

Protofactorization.

- Full theory considerations for a generic measurement \mathcal{O}

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}} \sim \sum_{X} \int & \mathrm{~d} \Phi_{L, X} \int \mathrm{~d}^{4} x \mathrm{~d}^{4} y \delta^{(4)}\left(p_{a}+p_{b}-p_{1}-p_{2}-p_{X}\right) \\
& \times\langle p p| \overline{\mathrm{T}}\left[J_{H}^{\dagger}(0) J_{L}(y)\right] \hat{\mathcal{O}}|L X\rangle\langle L X| \mathrm{T}\left[J_{L}^{\dagger}(x) J_{H}(0)\right]|p p\rangle \\
\sim \int & \mathrm{d}^{4} x \mathrm{~d}^{4} y \mathrm{~d}^{4} z\langle p p| \overline{\mathrm{T}}\left[J_{H}^{\dagger}(z) J_{L}(y+z)\right] \hat{\mathcal{O}} \mathrm{T}\left[J_{L}^{\dagger}(x) J_{H}(0)\right]|p p\rangle
\end{aligned}
$$

! Cannot disentangle J_{H} and J_{L}

- Match $J_{H, L}$ to collinear quarks \& leptons

$$
J_{H, L}(x) \rightarrow \sum_{\left\{n_{i}\right\}} \int\left\{\mathrm{d} \omega_{i}\right\} C_{H, L}\left(\left\{\omega_{i}\right\}\right) e^{-\mathrm{i} \mathcal{P} \cdot x}\left[V_{\mu}^{v \dagger} \bar{\chi}_{n_{i},-\omega_{i}} \Gamma^{\mu} \chi_{n_{j}, \omega_{j}}\right](x)
$$

Follow the standard procedure
\rightarrow Recombine label \& residual momenta
\rightarrow Get explicit phases for residual momenta that couldn't be recombined
$\rightarrow \int \mathrm{d}^{4} z \rightarrow \delta^{(4)}\left(\tilde{p}_{a}+\tilde{p}_{b}-\tilde{p}_{1}-\tilde{p}_{2}\right)$ label momentum conservation

Protofactorization.

- EFT cross-section

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}} \sim \int & \mathrm{~d} \omega_{a, b} \int \mathrm{~d}^{4} p_{1,2} \delta^{(4)}\left(\tilde{p}_{a}+\tilde{p}_{b}-\tilde{p}_{1}-\tilde{p}_{2}\right) \\
& \times \boldsymbol{H}^{\mu \nu}\left(\omega_{a, b}\right) L_{\mu \nu}\left(\omega_{1,2}\right) B_{n_{a}}\left(x_{a}\right) B_{n_{b}}\left(x_{b}\right) \\
& \times \int \mathrm{d}^{4} x \mathrm{~d}^{4} \boldsymbol{y} J_{n_{1}}\left(p_{1}\right) J_{n_{2}}\left(p_{2}\right) e^{\mathrm{i}\left(p_{1}+p_{2}-M v\right) \cdot(x-y)} \\
& \times\left\langle\left[\mathcal{S}_{a b}^{\dagger} V_{v}\right](0)\left[V_{v}^{\dagger} \mathcal{S}_{12}^{\dagger}\right](y) \hat{\mathcal{O}}_{s}\left[\mathcal{S}_{12} V_{v}\right](x)\left[V_{v}^{\dagger} \mathcal{S}_{a b}\right](0)\right\rangle
\end{aligned}
$$

With $\mathcal{S}_{i j}=Y_{n_{j}}^{\dagger} \boldsymbol{Y}_{n_{i}}$

- Hadronic $\boldsymbol{H}\left(\omega_{a, b}\right)=\left|C_{H}\right|^{2}$
- Leptonic $L\left(\omega_{1,2}\right)=\left|C_{L}\right|^{2}$
- No hard matching coeff. that 'sees' all 4 legs
- Inclusive lepton jet functions
- Non-local soft function
- $\left(n_{a}, n_{b}, n_{1}, n_{2}\right)$ Wilson lines
- Connected with HVET Wilson lines

Protofactorization.

- EFT cross-section

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \mathcal{O}} \sim \int & \mathrm{~d} \omega_{a, b} \delta^{(4)}\left(\tilde{p}_{a}+\tilde{p}_{b}-\tilde{p}_{1}-\tilde{p}_{2}\right) \\
& \times \boldsymbol{H}^{\mu \nu}\left(\omega_{a, b}\right) L_{\mu \nu}\left(\omega_{1,2}\right) B_{n_{a}}\left(x_{a}\right) B_{n_{b}}\left(x_{b}\right) \\
& \times \int \mathrm{d}^{4} r \mathrm{~d}^{4} p_{1,2} S(r) J_{n_{1}}\left(p_{1}\right) J_{n_{2}}\left(p_{2}\right) \delta^{(4)}(\underbrace{p_{1}+p_{2}-M v}_{\mathcal{O}\left(\Gamma_{V}\right)}-r)
\end{aligned}
$$

$S(r)=\left\{\begin{array}{l}\text { Contains the line shape } \\ \text { Encodes soft radiation off the resonance } \\ \text { Captures IFI \& FSR radiation }\end{array}\right.$
$S^{(0)}(r)=\left|\frac{1}{v \cdot r-\Delta / 2}\right|^{2} \rightarrow$ Not a $\delta(r)$ at LO!

- Convolution between soft \& jet function

Anticipated by [Beneke, Chapovsky, Signer, Zanderighi; '04]
\rightarrow Final state radiation deforms the line-shape

- Consistency on the decay side suggests that $Z_{s}=Z_{s}^{\text {thrust }}$!
- Checked at $\mathcal{O}\left(\alpha_{e}\right)$

Lepton \& Measurement definitions.

Typical lepton definition used by expreriments

- Bare: after QED radiation
- Born: before (inclusive over) QED radiation
- Dressed: clustering of QED radiation with a cone/jet algorithm
\rightarrow Define suitable Born leptons

$$
p_{i}^{\mu}=\bar{n}_{i} \cdot[\omega_{i} \frac{n_{i}}{2}+k_{i}^{+} \frac{\bar{n}_{i}}{2}+\underbrace{\sum_{j} \Theta_{i j} l_{s, j}}_{l_{1}^{-}, l_{2}^{-}}] \frac{n_{i}^{\mu}}{2}
$$

Measure $\mathcal{O}=\left\{Q^{2}, \boldsymbol{Y}, \Delta y\right\} \equiv \Phi_{L}$

- Close to resonance Q^{2} is constrained \rightarrow sensitivity to residual momenta
- Otherwise $\{\boldsymbol{Y}, \Delta y\}$ are unconstrained \rightarrow defined by Born level kinematics

$$
\begin{aligned}
& \delta\left(Q^{2}-\left(p_{1}+p_{2}\right)^{2}\right) \delta\left(Y-\frac{1}{2} \ln \left[\frac{n_{b} \cdot\left(p_{1}+p_{2}\right)}{n_{a} \cdot\left(p_{1}+p_{2}\right)}\right]\right) \\
& =\delta\left(\omega_{a, b}-e^{ \pm Y}(Q-l)\right)\left[1+\mathcal{O}\left(\frac{\Gamma_{V}}{Q}\right)\right] \\
& \text { with } \quad l=l_{1}^{-} \frac{v \cdot n_{1}}{2}+l_{2}^{-} \frac{v \cdot n_{2}}{2} \sim \mathcal{O}\left(\Gamma_{V}\right)
\end{aligned}
$$

EFT cross section.

- The EFT cross section now looks like this

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{L}} \sim & \boldsymbol{H}^{\mu \nu}(\boldsymbol{Q}) \boldsymbol{L}_{\boldsymbol{\mu}}(Q) \boldsymbol{B}_{n_{a}}\left(\frac{Q e^{Y}}{E_{\mathrm{cm}}}\right) \boldsymbol{B}_{n_{b}}\left(\frac{Q e^{-Y}}{E_{\mathrm{cm}}}\right) \\
& \times \int \mathrm{d}(v \cdot r) \mathrm{d} l_{1,2}^{-} \int \mathrm{d} k_{1,2}^{+} S\left(v \cdot r, l_{1}^{-}, l_{2}^{-}\right) J_{n_{1}}\left(\omega_{1} k_{1}^{+}\right) J_{n_{2}}\left(\omega_{2} k_{2}^{+}\right) \\
& \times \delta(\underbrace{\boldsymbol{Q - M _ { V }}}_{\mathcal{O}\left(\Gamma_{V}\right)}-k_{1}^{+}-k_{2}^{+}-\frac{l_{1}^{-}}{2}-\frac{l_{2}^{-}}{2}-v \cdot r)
\end{aligned}
$$

- The fact that Q is restricted to be near M_{V} induces an $\mathcal{O}\left(\Gamma_{V}\right)$ sensitivity which modifies the soft function
- Anywhere else ($B, J, \boldsymbol{H}, \boldsymbol{L}$) expand l away
- Physical picture is that the parts of the radiation recovered by clustering with the leptons should be 'known' to the propagator
- Define a new soft function

$$
S(v \cdot \bar{r}) \equiv \int \mathrm{d}(v \cdot r) \mathrm{d} l_{1,2}^{-} \delta\left((v \cdot \bar{r})-(v \cdot r)-\frac{l_{1}^{-}}{2}-\frac{l_{2}^{-}}{2}\right) S\left(v \cdot r, l_{1}^{-}, l_{2}^{-}\right)
$$

EFT cross section.

- Putting everything together and setting $\Delta Q \equiv Q-M_{V}$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{L}} & \sim \boldsymbol{H}^{\mu \nu}(Q) \boldsymbol{L}_{\mu \nu}(Q) B_{n_{a}}\left(\frac{Q e^{Y}}{E_{\mathrm{cm}}}\right) B_{n_{b}}\left(\frac{Q e^{-Y}}{E_{\mathrm{cm}}}\right) \\
& \times \int \mathrm{d} k_{1}^{+} \mathrm{d} k_{2}^{+} S\left(\Delta Q-k_{1}^{+}-k_{2}^{+}\right) J_{n_{1}}\left(\omega_{1} k_{1}^{+}\right) J_{n_{2}}\left(\omega_{2} k_{2}^{+}\right)
\end{aligned}
$$

- Since $J_{n_{1}}, J_{n_{2}}$ and $\boldsymbol{L}_{\mu \nu}$ didn't change, then $S(v \cdot \bar{r})$ must renormalize same way as $S(v \cdot r)$
- Therefore, also $S(v \cdot \bar{r})$ renormalizes like thrust!
- Explicit check at $\mathcal{O}\left(\alpha_{e}\right)$
- Note that $S(v \cdot \bar{r}), S(v \cdot r)$ differ in their finite pieces
- IFI/FI/InI/II/ISR: $\boldsymbol{R}+\boldsymbol{V}=\mathcal{O}\left(\epsilon^{0}\right) \Rightarrow$ NLL' $^{\prime}$ effects

Measuring q_{T} : Regimes, Modes \& Measurement.

- Let's measure in addition q_{T}

- Regime I: $q_{T} \sim \Gamma_{V} \ll M_{V} \sim \boldsymbol{Q}$
- uSofts

$$
\left(\Gamma_{V}, \Gamma_{V}, \Gamma_{V}\right) \sim\left(q_{T}, q_{T}, q_{T}\right)
$$

- Regime II: $\Gamma_{V} \ll q_{T} \ll \boldsymbol{M}_{\boldsymbol{V}} \sim \boldsymbol{Q}$
- Softs $\sim\left(q_{T}, q_{T}, q_{T}\right)$
- uSofts $\sim\left(\Gamma_{V}, \Gamma_{V}, \Gamma_{V}\right)$
! In Regime II only uSoft interactions keep the V_{v}^{μ} near its mass shell

Measuring q_{T} : Regimes, Modes \& Measurement.

- Let's measure in addition q_{T}

- Regime I: $q_{T} \sim \Gamma_{V} \ll M_{V} \sim \boldsymbol{Q}$
- uSofts

$$
\left(\Gamma_{V}, \Gamma_{V}, \Gamma_{V}\right) \sim\left(q_{T}, q_{T}, q_{T}\right)
$$

- Regime II: $\Gamma_{V} \ll q_{T} \ll \boldsymbol{M}_{\boldsymbol{V}} \sim \boldsymbol{Q}$
- Softs $\sim\left(q_{T}, q_{T}, q_{T}\right)$
- uSofts $\sim\left(\Gamma_{V}, \Gamma_{V}, \Gamma_{V}\right)$
! In Regime II only uSoft interactions keep the V_{v}^{μ} near its mass shell
- Complete measurement

$$
\begin{aligned}
\mathcal{O}= & \Theta_{1}\left[\delta\left(l_{1}^{-}-k_{1}^{-}\right) \theta\left(k_{2}^{-}-k_{1}^{-}\right) \delta\left(l_{2}^{-}\right) \delta^{(2)}\left(q_{T}\right)\right]+(1 \leftrightarrow 2) \\
& +\Theta_{a b}\left[\delta\left(l_{1}^{-}\right) \delta\left(l_{2}^{-}\right) \delta^{(2)}\left(q_{T}-k_{T}\right)\right] \\
& \text { with } \quad \Theta_{a b}+\Theta_{1}+\Theta_{2}=1
\end{aligned}
$$

\rightarrow Added $\Theta_{a b}$ region to cover the whole phase space

Factorization in Regime 1: $\Gamma_{V} \sim q_{T} \ll M_{V}$.

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{L} \mathrm{~d} q_{T}} & \sim H_{\mu \nu}(Q) L^{\mu \nu}(Q) \int \mathrm{d}^{2} k_{T_{a}} \mathrm{~d}^{2} k_{T_{b}} \mathrm{~d} k_{1}^{+} \mathrm{d} k_{2}^{+} \\
& \times B\left(k_{T_{a}}, \omega_{a}\right) B\left(k_{T_{b}}, \omega_{b}\right) J_{n_{1}}\left(\omega_{1} k_{1}^{+}\right) J_{n_{2}}\left(\omega_{2} k_{2}^{+}\right) \\
& \times S_{I}\left(q_{T}-k_{T_{a}}-k_{T_{b}}, \Delta Q-k_{1}^{+}-k_{2}^{+}\right)
\end{aligned}
$$

- Production: q_{T} convolution between S_{I} and q_{T} beam func'
- Decay: $\boldsymbol{\Delta} Q$ convolution between S_{I} and inclusive jet func'

For the Z :

- Consistency on the decay side still holds as previously (thrust-like)
- Consistency on the production side is like $2 \rightarrow 0$ QCD Drell-Yan
- IFI don't contribute to the pole structure

Factorization in Regime 1: $\Gamma_{V} \sim q_{T} \ll M_{V}$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{L} \mathrm{~d} q_{T}} & \sim \boldsymbol{H}_{\mu \nu}(Q) L^{\mu \nu}(Q) \int \mathrm{d}^{2} k_{T_{a}} \mathrm{~d}^{2} k_{T_{b}} \mathrm{~d} k_{1}^{+} \mathrm{d} k_{2}^{+} \\
& \times B\left(k_{T_{a}}, \omega_{a}\right) B\left(k_{T_{b}}, \omega_{b}\right) J_{n_{1}}\left(\omega_{1} k_{1}^{+}\right) J_{n_{2}}\left(\omega_{2} k_{2}^{+}\right) \\
& \times S_{I}\left(q_{T}-k_{T_{a}}-k_{T_{b}}, \Delta Q-k_{1}^{+}-k_{2}^{+}\right)
\end{aligned}
$$

- Production: q_{T} convolution between S_{I} and q_{T} beam func'
- Decay: $\boldsymbol{\Delta} \boldsymbol{Q}$ convolution between S_{I} and inclusive jet func'

For the W :

- IFI/FI don't contribute to the pole structure
- Naively we would expect (abelianization) that $\Gamma_{0} \sim Q_{q} Q_{q^{\prime}}$
- But Inl modify it with an extra term $\rightarrow \Gamma_{0} \sim Q_{q}^{2}+Q_{q^{\prime}}^{2}$
- Also rapidity anomalous dim. get modified $\gamma_{\nu}^{0}, \Gamma_{0} \sim Q_{q}^{2}+Q_{q^{\prime}}^{2}$

- Dictated from collinear gauge invariance, nontrivial!

Factorization in Regime 2: $\Gamma_{V} \ll q_{T} \ll M_{V}$

- Assume the stronger limit $\Gamma_{V} \ll q_{T}$ and use that hierarchy to re-factorize
- The requirement to be around the peak $Q \sim M_{V}$ still holds

This implies that at the scale q_{T}

$$
S_{I}\left(q_{T}, \bar{r}\right)=C_{I I}\left(q_{T}\right) \times S_{I I}(\bar{r})\left[\mathbf{1}+\mathcal{O}\left(\frac{\Gamma_{V}}{q_{T}}\right)\right]
$$

- Physical picture?

Since softs $\sim \mathcal{O}\left(q_{T}\right)$ take \boldsymbol{V}_{v}^{μ} far off shell, it can only interact with usofts $\sim \mathcal{O}\left(\Gamma_{V}\right)$ therefore any radiation on the decay side is power suppressed

Factorization in Regime 2: $\Gamma_{V} \ll q_{T} \ll M_{V}$

The EFT cross-section in Regime $2 \sim \Gamma_{V} \ll q_{T} \ll M_{V} \sim \boldsymbol{Q}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{L} \mathrm{~d} q_{T}}=W\left(Q, Y, q_{T}\right) L(Y, \Delta y, \Delta Q)
$$

with

$$
\begin{aligned}
\boldsymbol{W} & =\boldsymbol{H}(Q) \int \mathrm{d}^{2} \boldsymbol{k}_{T_{a}} \mathrm{~d}^{2} k_{T_{b}} C_{I I}\left(q_{T}-k_{T_{a}}-k_{T_{b}}\right) B_{n_{a}}\left(k_{T_{a}}, \omega_{a}\right) B_{n_{b}}\left(k_{T_{b}}, \omega_{b}\right) \\
\boldsymbol{L} & =\boldsymbol{H}_{\boldsymbol{L}}(\boldsymbol{Q}) \int \mathrm{d} k_{1}^{+} \mathrm{d} k_{2}^{+} S_{I I}\left(\Delta Q-k_{1}^{+}-k_{2}^{+}\right) J_{n_{1}}\left(\omega_{1} k_{1}^{+}\right) J_{n_{2}}\left(\omega_{2} k_{2}^{+}\right)
\end{aligned}
$$

- $C_{I I}$ is a Wilson coeff. at the scale q_{T}
- describes soft ISR and $\operatorname{InI} / I I$ that contributes to q_{T}
- For W : Not the usual $S_{D Y} \Rightarrow$ three-prong soft function
- IFI/FI/FSR are power suppressed
- $S_{I I}$ is the same as in 'protofactorization' $(S(v \cdot \bar{r}))$
- contains the line shape and describes usoft interactions with V_{v}
- convoluted with lepton jet functions \Rightarrow FSR modifies line shape

Factorization in Regime 2: $\Gamma_{V} \ll q_{T} \ll M_{V}$

The EFT cross-section in Regime $2 \sim \Gamma_{V} \ll q_{T} \ll \boldsymbol{M}_{\boldsymbol{V}} \sim \boldsymbol{Q}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{L} \mathrm{~d} q_{T}}=W\left(Q, Y, q_{T}\right) L(Y, \Delta y, \Delta Q)
$$

with

$$
\begin{aligned}
\boldsymbol{W} & =\boldsymbol{H}(Q) \int \mathrm{d}^{2} k_{T_{a}} \mathrm{~d}^{2} k_{T_{b}} C_{I I}\left(q_{T}-k_{T_{a}}-k_{T_{b}}\right) \boldsymbol{B}_{n_{a}}\left(k_{T_{a}}, \omega_{a}\right) B_{n_{b}}\left(k_{T_{b}}, \omega_{b}\right) \\
\boldsymbol{L} & =\boldsymbol{H}_{\boldsymbol{L}}(\boldsymbol{Q}) \int \mathrm{d} k_{1}^{+} \mathrm{d} k_{2}^{+} S_{I I}\left(\Delta Q-k_{1}^{+}-k_{2}^{+}\right) J_{n_{1}}\left(\omega_{1} k_{1}^{+}\right) J_{n_{2}}\left(\omega_{2} k_{2}^{+}\right)
\end{aligned}
$$

What about consistency?

- From Regime I to Regime II, only $S_{I}=C_{I I} \times S_{I I}$ changed
- That implies that the poles of $C_{I I}$ and $S_{I I}$ are those of S_{I}
- Consistency works separately for \boldsymbol{W} and \boldsymbol{L}

Recap.

We saw...

- A QCD-QED factorization for $\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{L} \mathrm{~d} q_{T}}$ for explicit production and decay
- Regime 1: $\Gamma_{V} \sim q_{T} \ll M_{V}$
- Non local soft function $S\left(k_{T}, v \cdot \bar{r}\right)$ that contains the line shape
- convoluted on the production side with q_{T} beam functions
- and on the decay side with inclusive lepton jet functions (Born leptons) \Rightarrow line shape modification!
- Regime 2: $\Gamma_{V} \ll q_{T} \ll \boldsymbol{M}_{\boldsymbol{V}}$
- We recover \boldsymbol{q}_{T} factorization!
- \boldsymbol{W} captures all the q_{T} dependence mainly from ISR
- L contains V^{μ} line-shape and decay captures FSR
- $W^{ \pm}$RGE running is modified by $\gamma_{\nu}^{0}, \Gamma_{0} \sim Q_{q}^{2}+Q_{q^{\prime}}^{2}$

Recap.

We saw...

- A QCD-QED factorization for $\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi_{L} \mathrm{~d} q_{T}}$ for explicit production and decay
- Regime 1: $\Gamma_{V} \sim q_{T} \ll M_{V}$
- Non local soft function $S\left(k_{T}, v \cdot \bar{r}\right)$ that contains the line shape
- convoluted on the production side with q_{T} beam functions
- and on the decay side with inclusive lepton jet functions (Born leptons) \Rightarrow line shape modification!
- Regime 2: $\Gamma_{V} \ll q_{T} \ll \boldsymbol{M}_{\boldsymbol{V}}$
- We recover q_{T} factorization!
- \boldsymbol{W} captures all the q_{T} dependence mainly from ISR
- L contains V^{μ} line-shape and decay captures FSR
- $W^{ \pm}$RGE running is modified by $\gamma_{\nu}^{0}, \Gamma_{0} \sim Q_{q}^{2}+Q_{q^{\prime}}^{2}$

Thank you!

