## Quark and Gluon quasi-PDFs at low-x

## Giovanni Antonio Chirilli

University of Regensburg
Resummation Evolution Factorization, 2020

University of Edinburgh - Edinburgh, UK<br>7 December, 2020

■ Definition of quasi-pdfs;
■ Light-ray operator with point-splitting: quasi-pdf frame;

■ brief review of high-energy OPE;

- Results in the saddle point approximation;

■ Results in the leading twist approximation;
■ Conclusions.

## Light-cone gluon and quark operator

Light-cone gluon and quark distributions are obtained from
light-cone gluon operator

$$
\langle P| G^{a i-}\left(x^{+}\right)\left[n x^{+}, 0\right]^{a b} G^{b i-}(0)|P\rangle
$$

light-cone quark operator

$$
\langle P| \bar{\psi}\left(x^{+}\right) \gamma^{-}\left[n x^{+}, 0\right] \psi(0)|P\rangle
$$

$x^{\mu}=n^{\mu} x^{+}+n^{\prime \mu} x^{-}+x_{\perp}^{\mu}, \quad x^{ \pm}=\frac{x^{0} \pm x^{3}}{\sqrt{2}}, \quad x_{\mu} n^{\mu}=x^{-} \quad x_{\mu} n^{\prime \mu}=x^{+}$
$P^{-} \gg 1$

## quasi-pdf

quasi-pdf as introduced by X. Ji in 2013; Motivation: study pdf on the lattice.
gluon quasi-distribution

$$
g\left(x_{B}, \mu^{2}, P\right)=\int \frac{d x}{4 \pi x_{B} P} e^{i x_{B} P \cdot x}\langle P| G^{3 \mu}(x) \exp \left(-i g \int_{0}^{x} d x^{\prime} A^{3}\left(x^{\prime}\right)\right) G_{\mu}^{3}(0)|P\rangle
$$

quark quasi-distribution

$$
q\left(x_{B}, \mu^{2}, P\right)=\int \frac{d x}{4 \pi} e^{i x_{B} P \cdot x}\langle P| \bar{\psi}(x) \gamma^{3} \exp \left(-i g \int_{0}^{x} d x^{\prime} A^{3}\left(x^{\prime}\right)\right) \psi(0)|P\rangle
$$

quasi-distribution studied by several groups
X. Xiong, X. Ji, J. H. Zhang and Y. Zhao (2014);
T. Izubuchi, X. Ji, L. Jin, I. W. Stewart and Y. Zhao (2018);
W. Wang, S. Zhao, R. Zhu (2018); W. Wang, J. H. Zhang, S. Zhao, R. Zhu (2019);
I. Balitsky, W. Morris, A. Radyuskin (2020);

## quasi-pdf

gluon quasi-distribution

$$
g\left(x_{B}, \mu^{2}, P\right)=\int \frac{d x}{4 \pi x_{B} P} e^{i x_{B} P x}\langle P| G^{3 \mu}(x) \exp \left(-i g \int_{0}^{x} d x^{\prime} A^{3}\left(x^{\prime}\right)\right) G_{\mu}^{3}(0)|P\rangle
$$

quark quasi-distribution

$$
q\left(x_{B}, \mu^{2}, P\right)=\int \frac{d x}{4 \pi} e^{i x_{B} P x}\langle P| \bar{\psi}(x) \gamma^{3} \exp \left(-i g \int_{0}^{x} d x^{\prime} A^{3}\left(x^{\prime}\right)\right) \psi(0)|P\rangle
$$

We will calculate the low-x behavior of the quasi-pdfs in coordinate space in two ways

- saddle point approximation

■ leading twist approximation

Tensor decomposition over invariant amplitudes of the gluon matrix element

$$
\begin{aligned}
M_{\mu \alpha ; \lambda \beta} \equiv & \langle P| G_{\mu \alpha}(x)[x, 0] G_{\lambda \beta}(0)|P\rangle \\
= & I_{1 \mu \alpha ; \lambda \beta} \mathcal{M}_{p p}+I_{2 \mu \alpha ; \lambda \beta} \mathcal{M}_{z z}+I_{3 \mu \alpha ; \lambda \beta} \mathcal{M}_{z p} \\
& +I_{4 \mu \alpha ; \lambda \beta} \mathcal{M}_{p z}+I_{5 \mu \alpha ; \lambda \beta} \mathcal{M}_{p p z z}+I_{6 \mu \alpha ; \lambda \beta} \mathcal{M}_{g g}
\end{aligned}
$$

the amplitudes $\mathcal{M}$ are functions of the invariants $x^{2}$ and $x \cdot P$
light-cone Gluon distribution is obtained from

$$
\begin{gathered}
g_{\perp}^{\alpha \beta} M_{+\alpha ; \beta_{+}}\left(x^{+}, P\right)=-2\left(P^{-}\right)^{2} \mathcal{M} p p \\
M_{+i ;+i}=M_{0 i ; 0 i}+M_{3 i ; 3 i}+M_{0 i ; 3 i}+M_{3 i ; 0 i} \\
M_{0 i ; i 0}+M_{j i ; i j}=2 p_{0}^{2} \mathcal{M}_{p p}
\end{gathered}
$$

At high energy (Regge limit) the transverse components are suppresed and we do not distinguish between the 0-component and the 3-component
twist-two gluon operator

$$
\mathcal{O}_{F}^{j}=F_{\mu_{+}}^{a} \nabla_{+}^{j-2} F_{+}^{\mu a}
$$

anomalous dimension is singular at $j=1$
$j \rightarrow 1 \Leftrightarrow x_{B} \rightarrow 0 ; \quad$ at $\quad \frac{\alpha_{s}}{j-1} \sim 1 \quad \Rightarrow \quad$ resummation: BFKL eq.
So, near $j=1$ we have the anomalous dimension to all orders via BFKL pomeron.
$j=1$ is called unphysical point, the operator becomes non local and BFKL provides the analytic continuation of the anomalous dimension at this point.

## From local operators to Light-ray operators

DIS at high-energy $\quad-q^{2}=Q^{2} \gg P^{2} \quad s=(P+q)^{2} \gg Q^{2}$

$$
\sigma^{\gamma^{*} p}\left(x_{B}, Q^{2}\right)=\int d \nu F(\nu) x_{B}^{-\aleph(\nu)-1}\left(\frac{Q^{2}}{P^{2}}\right)^{\frac{1}{2}+i \nu}
$$

in DIS, the $n$-th moment of the structure function is

$$
M_{n}=\int_{0}^{1} d x_{B} x_{B}^{n-1} \sigma^{\gamma^{*} p}\left(x_{B}, Q^{2}\right)=\int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} d \gamma \frac{F(\gamma)}{n-1-\aleph(\gamma)}\left(\frac{Q^{2}}{P^{2}}\right)^{\gamma}
$$

$\aleph(\gamma)$ is the BFKL pomeron intercept.
Closing the contour on the poles we get the anomalous dimensions of the leading and higher twist operators at the unphysical point.

■ For our task we could repeat the same steps as it is done in DIS.
■ But we need the explicit form of the twist-two operator at the unphysical point: $F_{\mu_{+}}^{a} \nabla_{+}^{-1} F_{+}^{\mu a}$
$\Rightarrow \quad$ light-ray operator with point-splitting
Balitsky(2013); Balitsky, Kazakov, Sobko (2013-2015)

## analytic continuation of local operator

analytic continuation of local operator to light-ray operators are singular in the BFKL approximation
$\Rightarrow$ analytic continuation of local operator to light-ray operators with point-splitting

Wilson frame: gluon operator Balitsky(2013); Balitsky, Kazakov, Sobko (2013-2015) quasi-pdf frame: this work (quark and gluon operators)



## Light-ray operators with point-splitting quasi-pdf frame

gauge link: $\quad[x, y]=\operatorname{Pexp}\left\{i g \int_{0}^{1} d u(x-y)_{\mu} A^{\mu}(x u+(1-u) y)\right\}$

Gluon

$$
\mathcal{F}_{n}^{j}\left(x_{\perp}, y_{\perp}\right) \equiv \int_{0}^{+\infty} d x^{+}\left(x^{+}\right)^{1-j} \mathcal{F}_{n}\left(x^{+} ; x_{\perp}, y_{\perp}\right)
$$

$\mathcal{F}_{n}\left(x^{+} ; x_{\perp}, y_{\perp}\right) \equiv \int d y^{+} G^{a i-}\left(n x^{+}+n y^{+}+x_{\perp}\right)\left[n x^{+}+n y^{+}+x_{\perp}, n y^{+}+y_{\perp}\right]^{a b} G^{b i-}\left(n y^{+}+y_{\perp}\right)$

Quark $\quad \mathcal{Q}_{n}^{j}\left(x_{\perp}, y_{\perp}\right) \equiv \int_{0}^{+\infty} d x^{+}\left(x^{+}\right)^{-j} \mathcal{Q}_{n}\left(x^{+} ; x_{\perp}, y_{\perp}\right)$

$$
\mathcal{Q}_{n}\left(x^{+} ; x_{\perp}, y_{\perp}\right) \equiv \int d x^{+} \bar{\psi}\left(n x^{+}+n y^{+}+x_{\perp}\right) \gamma^{-}\left[n x^{+}+n y^{+}+x_{\perp}, n y^{+}+y_{\perp}\right] \psi\left(n y^{+}+y_{\perp}\right)
$$

$x^{\mu}=x^{+} n^{\mu}+x^{-} n^{\prime \nu}+x_{\perp}^{\mu}$

## remind: High-energy OPE for DIS


factorization scale: rapidity $\eta$

## Rapidity $\mathrm{Y}>\eta$ - coefficient function ("impact factor")

Rapidity $\mathrm{Y}<\eta$ - matrix elements of (light-like) Wilson lines with rapidity divergence cut by $\eta$

$$
U_{x}^{\eta}=\operatorname{Pexp}\left[i g \int_{-\infty}^{\infty} d x^{+} A_{+}^{\eta}\left(x_{+}, x_{\perp}\right)\right]
$$

## remind: High-energy OPE for DIS



The high-energy operator product expansion is

$$
\begin{aligned}
& T\left\{\hat{j}_{\mu}(x) \hat{j}_{\nu}(y)\right\}=\int d^{2} z_{1} d^{2} z_{2} I_{\mu \nu}^{\mathrm{LO}}\left(z_{1}, z_{2}, x, y\right) \operatorname{Tr}\left\{\hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta}\right\} \\
& +\int d^{2} z_{1} d^{2} z_{2} d^{2} z_{3} I_{\mu \nu}^{\mathrm{NLO}}\left(z_{1}, z_{2}, z_{3}, x, y\right)\left[\operatorname{tr}\left\{\hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{3}}^{\dagger \eta}\right\} \operatorname{tr}\left\{\hat{U}_{z_{3}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta}\right\}-N_{c} \operatorname{tr}\left\{\hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta}\right\}\right]
\end{aligned}
$$

$$
T\left\{\hat{j}_{\mu}(x) \hat{j}_{\nu}(y)\right\}=\int d^{2} z_{1} d^{2} z_{2} I_{\mu \nu}^{\mathrm{LO}}\left(z_{1}, z_{2}, x, y\right) \operatorname{Tr}\left\{\hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta}\right\}
$$

- Calculate LO Imapct factor: $I_{\mu \nu}^{\mathrm{LO}}\left(z_{1}, z_{2}, x, y\right)$

■ Calculate evolution of matrix element $\operatorname{Tr}\left\{\hat{U}_{z_{1}}^{\eta} \hat{U}_{z_{2}}^{\dagger \eta}\right\}$ : BK/JIMWLK equation
■ we need only linear terms: BFKL
■ Solve the evolution equation with initial condition: GBW/MV model

- Convolute the solution of the evolution equation with the impact factor

$$
\begin{aligned}
& \langle P| G^{a i-}(x)[x, 0] G^{b, i-}(0)|P\rangle=\int d^{2} z_{2} d^{2} z_{z} I_{g}\left(z_{1}, z_{2} ; x\right)\langle P| \operatorname{Tr}\left\{U\left(z_{1}\right) U^{\dagger}\left(z_{2}\right)\right\}|P\rangle \\
& \quad\langle P| \bar{\psi}(x) \gamma^{-}[x, 0] \psi(0)|P\rangle=\int d^{2} z_{2} d^{2} z_{z} I_{q}\left(z_{1}, z_{2} ; x\right)\langle P| \operatorname{tr}\left\{U\left(z_{1}\right) U^{\dagger}\left(z_{2}\right)\right\}|P\rangle
\end{aligned}
$$

■ Calculate coefficient functions (impact factors) $I_{g}$ and $I_{q}$

- Convolute them with the solution of the evolution equation of relative matrix elements

$$
\begin{gathered}
\langle P| G^{a i-}(x)[x, 0] G^{b, i-}(0)|P\rangle=\int d^{2} z_{2} d^{2} z_{z} I_{g}\left(z_{1}, z_{2} ; x\right)\langle P| \operatorname{Tr}\left\{U\left(z_{1}\right) U^{\dagger}\left(z_{2}\right)\right\}|P\rangle \\
\langle P| \bar{\psi}(x) \gamma^{-}[x, 0] \psi(0)|P\rangle=\int d^{2} z_{2} d^{2} z_{z} I_{q}\left(z_{1}, z_{2} ; x\right)\langle P| \operatorname{tr}\left\{U\left(z_{1}\right) U^{\dagger}\left(z_{2}\right)\right\}|P\rangle
\end{gathered}
$$

Diagrams for the gluon impact factor $I_{g}$ and quark impact factor $I_{q}$ respectively


- Gluon: $\operatorname{Tr}$ trace in the adjoint representation;
- Quark: tr trace in the fundamental representation.


## Linear evolution equation: BFKL equation

$$
\begin{gathered}
\mathcal{U}\left(z_{12}\right)=1-\frac{1}{N_{c}} \operatorname{tr}\left\{U\left(z_{1 \perp}\right) U^{\dagger}\left(z_{2 \perp}\right)\right\} \quad \frac{1}{z_{12}^{2}} \mathcal{U}^{a}\left(z_{12}\right) \equiv \mathcal{V}^{a}\left(z_{12}\right) \quad z_{12}=\left|z_{1 \perp}-z_{2 \perp}\right| \\
2 a \frac{d}{d a} \mathcal{V}_{a}(z)=\frac{\alpha_{s} N_{c}}{\pi^{2}} \int d^{2} z^{\prime}\left[\frac{\mathcal{V}_{a}\left(z^{\prime}\right)}{\left(z-z^{\prime}\right)^{2}}-\frac{\left(z, z^{\prime}\right) \mathcal{V}_{a}(z)}{z^{\prime 2}\left(z-z^{\prime}\right)^{2}}\right]
\end{gathered}
$$

a rapidity cut-off in coordinate space.

## Linear evolution equation: BFKL equation

$\mathcal{U}\left(z_{12}\right)=1-\frac{1}{N_{c}} \operatorname{tr}\left\{U\left(z_{1 \perp}\right) U^{\dagger}\left(z_{2 \perp}\right)\right\} \quad \frac{1}{z_{12}^{2}} \mathcal{U}^{a}\left(z_{12}\right) \equiv \mathcal{V}^{a}\left(z_{12}\right) \quad z_{12}=\left|z_{1 \perp}-z_{2 \perp}\right|$

$$
2 a \frac{d}{d a} \mathcal{V}_{a}(z)=\frac{\alpha_{s} N_{c}}{\pi^{2}} \int d^{2} z^{\prime}\left[\frac{\mathcal{V}_{a}\left(z^{\prime}\right)}{\left(z-z^{\prime}\right)^{2}}-\frac{\left(z, z^{\prime}\right) \mathcal{V}_{a}(z)}{z^{\prime 2}\left(z-z^{\prime}\right)^{2}}\right]
$$

$a \quad$ rapidity cut-off in coordinate space.
Solution

$$
\begin{aligned}
& \mathcal{V}^{a}\left(z_{12}\right)=\int \frac{d \nu}{2 \pi^{2}}\left(z_{12}^{2}\right)^{-\frac{1}{2}+i \nu}\left(\frac{a}{a_{0}}\right)^{\frac{\alpha_{s} N_{c}}{2 \pi} \chi(\nu)} \int d^{2} \omega\left(\omega_{\perp}^{2}\right)^{-\frac{1}{2}-i \nu} \mathcal{V}^{a_{0}}\left(\omega_{\perp}\right) \\
& \chi(\nu)=2 \psi(1)-\psi\left(\frac{1}{2}+i \nu\right)-\psi\left(\frac{1}{2}-i \nu\right)
\end{aligned}
$$

initial condition $\mathcal{V}^{a_{0}}\left(\omega_{\perp}\right)$ : GBW/MV model
$Q_{s}$ saturation scale: initial condition for the high-energy evolution.


DIS at high-energy
$Q$ fixed, $s \rightarrow \infty \quad \Rightarrow \quad x_{B} \sim \frac{Q^{2}}{s} \rightarrow 0$
coordinate space
$|x-y|_{\perp} \quad$ fixed $, \quad x^{+}, y^{+} \rightarrow \infty$
coordinate space rapidity cut-off: $\quad a=\frac{2 x^{+} y^{+}}{(x-y)_{\perp}^{2}}$
I. Balitsky, G.A.C. (2009)

## Results in the saddle point approximation

$n^{\mu}=\frac{x^{\mu}}{|x|}, \quad \bar{\alpha}_{s}=\frac{\alpha_{s} N_{c}}{\pi}$
Gluon

$$
\begin{aligned}
& n_{\mu} n_{\nu}\langle P| G^{a \alpha \mu}(x)[x, 0]^{a b} G^{b \beta \nu}(0)|P\rangle \\
& \quad=g_{\perp}^{\alpha \beta} \frac{3 N_{c}^{2}}{128} \frac{Q_{s} \sigma_{0}}{|x|} \frac{\exp \left\{-\frac{\ln ^{2} Q_{s}|x|}{14 \zeta(3) \bar{\alpha}_{s} \ln (x \cdot P)}\right\}}{\sqrt{14 \zeta(3) \bar{\alpha}_{s} \ln (x \cdot P)}}(x \cdot P)^{\bar{\alpha}_{s} 4 \ln 2}
\end{aligned}
$$

Quark

$$
\begin{aligned}
& n_{\mu}\langle P| \bar{\psi}(x) \gamma^{\mu}[x, 0] \psi(0)|P\rangle \\
& \quad=\frac{i N_{c}}{32} Q_{s} \sigma_{0} \frac{\exp \left\{-\frac{\ln ^{2} Q_{s}|x|}{14 \zeta(3) \bar{\alpha}_{s} \ln (x \cdot P)}\right\}}{\sqrt{14 \zeta(3) \bar{\alpha}_{s} \ln (x \cdot P)}}(x \cdot P)^{\bar{\alpha}_{s} 4 \ln 2}
\end{aligned}
$$

## Usual exponential growth of high-energy evolution

## Best check: correlation functions in CFT

Supersymmetric light-ray operator $S^{j}\left(x_{\perp}\right)$ (of spin j ) are analytic continuation of local operators

$$
\left.\left\langle S^{j}\left(z_{1 \perp}\right)\right)^{j^{\prime}}\left(z_{2 \perp}\right)\right\rangle=\delta\left(j-j^{\prime}\right) \frac{C(j, \Delta) s^{j-1}}{\left[\left(z_{1 \perp}-z_{2 \perp}\right)^{2}\right]^{\Delta-1}} \mu^{-2 \gamma_{\mathrm{an}}}
$$

$\Delta$ dimension of the operator; $s$ is Mandelstam variable. $\mu$ is the renormalization point; $\gamma_{\mathrm{an}}$ anomalous dimension.
correlation function for Gluon: in the limit $\alpha_{s} \ll \omega=j-1 \ll 1$ quasi-pdf frame agrees with Wilson frame which agrees with the general form of two-point correlator of light-ray operators.

$$
\left\langle\mathcal{F}_{n}^{j}\left(x_{\perp}, y_{\perp}\right) \mathcal{F}_{n^{\prime}}^{j^{\prime}}\left(x_{\perp}^{\prime}, y_{\perp}^{\prime}\right)\right\rangle=-\frac{N_{c}^{2}}{2 \pi} \frac{2^{\omega} \omega}{\left[\left(X-X^{\prime}\right)_{\perp}^{2}\right]^{2+\omega}}\left(\frac{\left(X-X^{\prime}\right)_{\perp}^{2}}{\left|\Delta_{\perp}\right|\left|\Delta_{\perp}^{\prime}\right|}\right)^{\omega+2 \frac{\bar{\alpha}_{s}}{\omega}} \delta\left(\omega-\omega^{\prime}\right)
$$

$X_{\perp}=\frac{x_{\perp}+y_{\perp}}{2}, \quad X_{\perp}^{\prime}=\frac{x_{\perp}^{\prime}+y_{\perp}^{\prime}}{2}$
$\Delta_{\perp}=(x-y)_{\perp}, \quad \Delta_{\perp}^{\prime}=\left(x^{\prime}-y^{\prime}\right)_{\perp} \quad \Delta_{\perp} \Delta_{\perp}^{\prime}$ is like the IR cut-off $\mu^{-2}$

## Best check: correlation functions in CFT

Supersymmetric light-ray operator $S^{j}\left(x_{\perp}\right)$ (of spin j ) are analytic continuation of local operators

$$
\left.\left\langle S^{j}\left(z_{1 \perp}\right)\right)^{j^{\prime}}\left(z_{2 \perp}\right)\right\rangle=\delta\left(j-j^{\prime}\right) \frac{C(j, \Delta) s^{j-1}}{\left[\left(z_{1 \perp}-z_{2 \perp}\right)^{2}\right]^{\Delta-1}} \mu^{-2 \gamma_{\mathrm{an}}}
$$

$\Delta$ dimension of the operator; $s$ is Mandelstam variable. $\mu$ is the renormalization point; $\gamma_{\mathrm{an}}$ anomalous dimension. correlation function for Quark (gluino): in the limit $\alpha_{s} \ll \omega=j-1 \ll 1$ agrees with the general form of two-point correlator of light-ray operators.

$$
\left\langle\mathcal{Q}_{n}^{j}\left(x_{\perp}, y_{\perp}\right) \mathcal{Q}_{n^{\prime}}^{\mathcal{j}^{\prime}}\left(x_{\perp}^{\prime}, y_{\perp}^{\prime}\right)\right\rangle=\frac{8}{\pi} \frac{2^{\omega} \omega}{\left[\left(X-X^{\prime}\right)_{\perp}^{2}\right]^{2+\omega}}\left(\frac{\left(X-X^{\prime}\right)_{\perp}^{2}}{\left|\Delta_{\perp}\right|\left|\Delta_{\perp}^{\prime}\right|}\right)^{\omega+2 \frac{\bar{\alpha}_{s}}{\omega}} \delta\left(\omega-\omega^{\prime}\right)
$$

$X_{\perp}=\frac{x_{\perp}+y_{\perp}}{2}, \quad X_{\perp}^{\prime}=\frac{x_{\perp}^{\prime}+y_{\perp}^{\prime}}{2}$
$\Delta_{\perp}=(x-y)_{\perp}, \quad \Delta_{\perp}^{\prime}=\left(x^{\prime}-y^{\prime}\right)_{\perp} \quad \Delta_{\perp} \Delta_{\perp}^{\prime}$ is like the IR cut-off $\mu^{-2}$

## leading twist approx. for quasi-pdf

$$
\bar{\alpha}_{s}=\frac{\alpha_{N} N_{c}}{\pi} \quad n^{\mu}=\frac{x^{\mu}}{\| x \mid}
$$

## Gluon

$$
n_{\mu} n_{\nu}\langle P| G^{a \alpha \mu}(x)[x, 0]^{a b} G^{b \beta \nu}(0)|P\rangle=\frac{g_{\perp}^{\alpha \beta}}{2} \frac{N_{c} Q_{s}^{2} \sigma_{0}}{4 \pi \alpha_{s}}\left(\frac{\ln (x \cdot P)}{2 \bar{\alpha}_{s} \ln Q_{s}|x|}\right)^{\frac{1}{2}} J_{1}(z)
$$

## Quark

$$
\begin{gathered}
n_{\mu}\langle P| \bar{\psi}(x) \gamma^{\mu}[x, 0] \psi(0)|P\rangle=-\frac{i Q_{s}^{2} \sigma_{0}|x|}{12 \pi \alpha_{s}}\left(\frac{\ln (x \cdot P)}{2 \bar{\alpha}_{s} \ln Q_{s}|x|}\right)^{\frac{1}{2}} J_{1}(z) \\
z=\left[2 \bar{\alpha}_{s} \ln \left(Q_{s}^{2} x^{2}\right) \ln \left(2(x \cdot P)^{2}\right)\right]^{\frac{1}{2}}
\end{gathered}
$$

■ Saddle point approximation: quasi-pdfs grow with energy as expected

- Correlation function of quasi-pdfs quark and gluon operators agrees with the general result for two-point correlation function in CFT.

■ Leading twist approximation in coordinate space for quasi-pdfs gives Bessel function with double log in the argument.

