Jet Substructure for heavy ion collisions.

Varun Vaidya MIT, CTP

Based on

JHEP 20 (2020) 024, Xiaojun Yao, V.V arXiV 2010.00028, V.V

Quark Gluon Plasma at colliders

QGP: A soup of free quarks and gluons created in the early universe and recently at Heavy Ion colliders

Quark Gluon Plasma at colliders

 Few events in the QGP background produce energetic partons that evolve into back to back jets

• How is the jet modified as it travels through the medium?

The observable

- Identify Dijet events with large radius jets $R \sim 1$.
- Groom the jets to remove soft radiation : Removes soft contamination from the cooling QGP.

An Effective Field theory for jet propagation in the QGP medium

An EFT in the forward scattering regime

In the limit
$$\theta \to 0$$

 $\frac{d\sigma}{d\Omega} \propto \frac{1}{\theta^4}$

- Develop an EFT formalism for forward scattering of a jet in QGP with λ = θ <<1 as the expansion parameter.
- The jet is made up of highly energetic massless partons moving along the light-cone

$$p_c \sim Q(1, \lambda^2, \lambda)$$

• QGP is a thermal bath made of soft partons (T~ θ Q <<Q)

$$p_s \sim Q(\lambda, \lambda, \lambda)$$

Light-Cone co-ordinates

$$n^{\mu} \equiv (1,0,0,1) \qquad \overline{n}^{\mu} \equiv (1,0,0,-1)$$

$$p^{\mu} \equiv (\overline{n} \cdot p, n \cdot p, \vec{p}_{\perp})$$

An EFT in the forward scattering regime

Soft Collinear Effective Theory : An effective QCD Lagrangian at leading power in λ

I. Rothstein, I. Stewart, JHEP 1608 (2016) 025

• The Glauber interaction breaks factorization between the Soft and Collinear sectors

EFT for jet substructure in QGP

Physical scales that describe the system

In this talk

 $Q >> Q z_{cut} >> q_T \sim \theta Q \sim T \sim Q \sqrt{e} >> m_D \geq \Lambda_{OCD}$

Weak coupling regime

EFT for jet substructure in QGP

 Only the collinear mode talks to the medium(soft mode) via the Glauber Lagrangian which breaks factorization.

Jets as Open Quantum systems

How do we describe the evolution of a jet as it traverses a region of the QGP?

- Treat the jet as an open quantum system interacting with an environment (via Glaubers)
- Write an evolution equation for the factorized reduced density matrix of the jet.

$$\rho(0) = \left| e^+ e^- \right| \otimes \rho_B$$
QGP density matrix

We assume ρ_B is time independent and intially unentagled from the partons that are involved in the hard interaction.

$$\rho(t) = \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} e^{-i(H_{SCET} + H_{G})t} O_{hard}(t_{1}) \rho(0) O_{hard}^{+}(t_{2}) e^{i(H_{SCET} + H_{G})t}$$

Factorization for the density matrix

- The Glauber Hamiltonian prevents us from factorizing the Soft physics from the collinear to all orders in perturbation theory
- Factorization needs to be proven order by order in the Glauber operator insertion

 $\Sigma(t) = Tr[\rho(t)M]_{t\to\infty}$

$$\Sigma(t) = Tr[\rho(t)M]_{t \to \infty} = \Sigma^{(0)}(t) + \Sigma^{(1)}_{a}(t) + \Sigma^{(1)}_{b}(t) + O(H_{G}^{3})$$

Vacuum evolution Single Real interaction with medium Single Virtual interaction with medium

Factorization for the density matrix

Leading order : Vacuum evolution

$$\Sigma^{(0)} = V \times H(Q, \mu) \times S(\vec{q}_{T}; \mu) \otimes_{q_{T}} \mathcal{J}_{n}^{\perp}(e_{n}, Q, z_{cut}, \vec{q}_{T}; \mu) \otimes_{q_{T}} \mathcal{J}_{\bar{n}}^{\perp}(e_{\bar{n}}, Q, z_{cut}, \bar{q}_{T}; \mu) \otimes_{q_{T}} \mathcal{J}_{\bar{n}}^{\perp}(e_{\bar{n}}, Q, z_{cut}, \bar{q}; \mu) \otimes_$$

Using RG evolution of the factorized functions allows us to resum large logarithms in ratio of scales

Factorization for the density matrix

Next to Leading order: Quadratic Glauber insertion

$$\Sigma_{a}^{(1)} = V \times |C_{qq}|^{2} H(Q,\mu) S(\vec{q}_{T}) \otimes_{q_{T}} S_{sc,\bar{n}}(\vec{q}_{T}) \otimes_{q_{T}} S_{sc,n}(\vec{q}_{T}) \otimes_{e_{n}} CS_{n}(Qz_{cut},e_{n}) \otimes_{e_{n}} \otimes_{q_{T}} \tilde{J}_{n}(e_{n},q_{T}) J_{\bar{n}}(e_{\bar{n}}) \otimes_{e_{\bar{n}}} CS_{\bar{n}}(e_{\bar{n}})$$

$$\int \frac{d^{4}k}{(2\pi)^{4}k_{\perp}^{4}} D^{AB}_{>}(k) \delta^{2}(q_{T}-\vec{k}_{\perp}) \int d^{4}x \int d^{4}y e^{i(x-y)\cdot k} \left\{ J_{n}^{AB}(e_{n},x,y) \right\}$$

Correlator of soft operators in the medium

Modified jet function

Medium modified jet function

- Anomalous dimension is the same as the vacuum jet function
- Logarithms in the gluon mass are NOT resummed by the present EFT formulation : Match to EFT at the scale m_D

Markovian approximation

- Till now, we have considered a single interaction of the jet with the medium.
- This can be used to resum multiple interactions treating them as independent scattering events -> Markovian approximation

Between two interactions, the environment loses any memory of interaction with the jet. coherence time of the environment $(t_e) \ll time scale of the interaction with system <math>(t_i)$ $t_e \sim 1/T$ $t_i \sim 1/(T \alpha_s)$ So for a weak coupling regime, the Markovian approximation holds.

Evolution equation

$$P(e_n, e_{\bar{n}}, \vec{q}_T) \equiv \frac{d\sigma(t)}{de_n de_{\bar{n}} d^2 \vec{q}_T} = \mathcal{N} \frac{\Sigma(t)}{V}$$

Taking the limit t \rightarrow 0 yields an evolution equation for the differential cross section

$$\partial_t P(e_n, \vec{q}_T)(t) = -RP(e_n, \vec{q}_T) + P(e_n, \vec{q}_T) \otimes_{q_T} K(q_T) + F(q_T, e_n)$$

$$\frac{d\sigma}{de_n d\vec{q}_T}(t) = \int d^2 \vec{r}_{\perp} e^{i\vec{r}_{\perp} \cdot \vec{q}_T} \left\{ V(e_n, \vec{r}_{\perp}) + \tilde{g}(e_n, \vec{r}_{\perp}) \right] e^{(-R + \tilde{K}(\vec{r}_{\perp}))t} - \tilde{g}(e_n, \vec{r}_{\perp}) \right\}$$
Cross section as a function of medium
$$Vacuum \ cross \ section \qquad Thermal correlators in \qquad Medium \ induced \ cross \ section \qquad Sec$$

the medium

The solution resums mutiple interactions of the jet partons with the medium in the Markovian approximation.

Summary and Future directions

Summary

- An EFT for jet substructure in heavy ion collisions
- Resums large logarithms of scales using factorization
- Resums multiples interactions of the jet with the medium in the Markovian approximation

Future directions

- A phenomenological prediction including nuclear pdf's.
- Match to EFT at the scale m_D to resum new medium induced logartihms.
- Extend formalism to jets initiated by heavy quarks.
- Relax assumption for time independence of medium density matrix.

THANKS

The observable

• Impose a jet mass measurement on groomed jet to ensure radiation collimated along the jet axis

$$\frac{d\sigma}{de_1 de_2 d^2 q_T}$$

$$e_{jet} = \frac{\left(\sum_{j \in jet} p_{j}\right)^{2}}{E_{jet}}$$

Leading order : Vacuum evolution

$$S(\vec{q}_{T}) = \frac{1}{N_{R}} \operatorname{tr} \langle X_{S} | \mathcal{T} \Big\{ e^{-i \int_{0}^{\infty} dt' H_{S}(t')} S_{\bar{n}}^{\dagger} S_{n}(0) \Big\} \rho_{QGP} \bar{\mathcal{T}} \Big\{ e^{-i \int_{0}^{\infty} dt' H_{S}(t')} S_{n}^{\dagger} S_{\bar{n}}(0) \Big\} \delta^{2}(\vec{q}_{T} - \mathcal{P}_{\perp}) | X_{S} \rangle$$

If the time scale for Soft emissions off the intial hard quark is much smaller than the formation time for the medium, then

$$S(\vec{q}_T) = \left(\mathbf{S}_{v}(\mathbf{q}_T) \mathbf{Tr}[\rho_{QGP}] \right)$$

vacuum soft function

Evolution equation

Integro-differential Evolution equation can be solved in impact parameter space.

The solution resums mutiple interactions of the jet partons with the medium in the Markovian approximation.