Large-momentum effective theory for partons and light-cone physics

Xiangdong Ji Center for Nuclear Femtography, SURA, D.C. & University of Maryland

Resummation, Evolution, Factorization 2020 (Higgs Center for Theoretical Physics, University of Edingurgh) Dec. 2020

Outline

- Three representations for partons
- Large momentum expansion as an EFT
- Going beyond collinear partons
- Conclusions
- Refs: X. Ji, Sci.China Phys.Mech.Astron. 57 (2014) 1407-1412
 X. Ji, Liu, Liu, Zhang, Zhao, 2004.03543
 X. Ji, 2007.06613

Three representations for partons

Feynman's parton model

 When the proton travels at v ~ c, one can assume the proton travels exactly at v=c, or the proton momentum is

p=E=∞

(Infinite momentum frame, IMF)

Proton may be considered as a collection of interaction-free particles: partons

Momentum distribution

 High-energy scattering in impulse approximation in NR systems probes momentum distribution

$$\begin{split} n\left(\vec{k}\right) &= \left|\psi\left(\vec{k}\right)\right|^2 \\ &\sim \int \psi^*(\vec{r})\psi(0)e^{i\vec{k}\vec{r}}d^3r \\ &\sim \int \langle \Omega |\hat{\psi}^+(\vec{r})\hat{\psi}(0)|\Omega \rangle e^{i\vec{k}\vec{r}}d^3r \end{split}$$

 Mom.dis. are related to pure-space (Euclidean) correlations, generally amenable for Monte Carlo simulations.

PDF a la Feynman

Consider the mom.dis. of constituents in a hadron

 $f(k^z, P^z) = \int d^2k_{\perp} f(k^z, k_{\perp}, P^z)$

which depends on P^z because of relativity.

(H is not invariant under boost K)

• PDF is a result of the $P^z \rightarrow \infty$ limit,

 $f(k^z, P^z) \rightarrow_{p^z \rightarrow \infty} f(x)$ with $x = \frac{k^z}{P^z}$,

Euclidean formulation of partons

Calculate the Euclidean correlation

$$C(\lambda) = \langle P^z = \infty | \overline{\psi}(z) \Gamma \psi(0) | P^z = \infty \rangle$$

$$\lambda = \lim_{P^z \to \infty, z \to 0} (zP^z).$$

Parton distribution

$$f(x) = \frac{1}{2P^+} \int \frac{d\lambda}{2\pi} e^{ix\lambda} C(\lambda) \ .$$

Nobody has any use of this

Hard scattering theory

Factorization theorems: The scattering cross sections are factorized in terms of PDFs and parton x-section.

$$\sigma = \int dx_a dx_b f_{a/A}(x_a) f_{b/B}(x_b) \hat{\sigma}$$

Light-front collinear modes

 In lagrangian formulation of parton physics, the partons are represented by collinear modes in QCD

 $\psi(\lambda n)$, $n^2 = 0$

 $\boldsymbol{\lambda}$ is the distance along the LF

 Parton physics is related to correlations of these fields along n with distance λ.

e.g. Soft-collinear Effective Theory (SCET), Bauer

Partons as LF correlations

Probes
 operators) are light-cone correlations

 $\hat{O} = \phi_1(\lambda_1 \mathbf{n})\phi_2(\lambda_2 n)\dots\phi_k(\lambda_k n)$

 The matrix elements are independent of hadron momentum, and they can be calculated in the states in the rest frame.

Field Theory in IMF

- What does an object look like when travelling at infinite momentum or speed of light?
- S. Weinberg (scalar QFT) Dynamics at infinite momentum Phys. Rev. 150 (1966) 1313-1318

- All kinematic infinities can be removed from the calculations, resulting a set of rules for Hamiltonian perturbation theory ("old-fashioned p.t.")
- The result is similar to a "non-relativistic" theory.

Dirac's form of dynamics

- The Weinberg's rules exactly correspond to what Dirac proposed in 1949.
- Paul A.M. Dirac,
- Forms of Relativistic Dynamics,
- Rev. Mod. Phys. 21 (1949) 392-399.
 - "Front form"
- or Light-front quantization (LFQ)

Light-front quantization (Brodsky et al)

Quantizing the theory with "new coordinates"

$$x^+ = \frac{x^0 + x^3}{\sqrt{2}}, \ x^- = \frac{x^0 - x^3}{\sqrt{2}}$$

by treating x^+ as the new "time"

 x^{-} as the **new** "space" dimension.

Summary

Origin	States	operators	Rep
Feynman	P=∞	Euclidean	"Schrodinger"
QCD Factorization	P finite	Light-front	"Heisenberg"
Light-front quatization	P=∞	Light-front	Hamiltonian

Large-momentum expansion as an EFT

Large momentum expansion

- Approximate p=∞ by a large P
- This is what we frequently do in QCD Lattice QCD: approximate a continuum theory by a discrete one. cut-off $\Lambda \rightarrow \infty$, on lattice $\Lambda = \pi/a$ 0.1 fm ~ 2 GeV

HQET: $\epsilon = \Lambda_{QCD}/m_Q$ using $m_Q = \infty$ to approximate m_c =1.5 GeV, m_b = 4.2 GeV

How good is the finite-P approximation?

 Assuming the P-> ∞limit exists, one can naïve make a large-P expansion,

 $f(k^z, P^z) = f(x) + f_2(x)(M/P^z)^2 + \dots$

where M is a bound-state scale,

 P^z is a large-momentum scale.

•
$$\epsilon = \left(\frac{M}{P^z}\right)^2$$
 is the expansion parameter
M =1 GeV, Pz=2 GeV, $\epsilon = 1/4$
the expansion may already work.

QFT subtleties

- There is a UV cut-off Λ_{UV} , $f(k^z, P^z)$ is not analytic at $P^z = \infty!$ (In Pz)
- There are two possible $P^z \rightarrow \infty$ limits:

1. $P^z \ll \Lambda_{UV} \rightarrow \infty$,IMF limit (lattice QCD)2. $P^z \gg \Lambda_{UV} \rightarrow \infty$ LFQ limit (HEP PDF)

- Momentum distribution is calculated with the limit 1), but PDF is defined in limit 2).
- Solution: matching in EFT

The IR physics is the same, and the difference is perturbative!

Large-momentum expansion in field theory

• For finite momentum, one can have a factorization formula for large $\gamma \square (2-5)$:

$$\begin{split} \tilde{f}(y,P^z) &= \int Z(y/x,xP^z/\mu)f(x,\mu)dx \\ &+ \mathcal{O}\Big(\frac{\Lambda_{\rm QCD}^2}{y^2(P^z)^2},\frac{\Lambda_{\rm QCD}^2}{(1-y)^2(P^z)^2}\Big), \end{split}$$

• Power counting:

Large scales: parton and hadron remnants momenta

The expansion works only for x away from 0, 1

Where an EFT?

• An EFT integrates out the d.o.f. Q, outside the model space P.

P+Q=1

- LaMET P-space contains all modes with momentum between 0 and P^z , and cutoff $\Lambda_{UV} \gg P^z$.
- LF correlations contain all momentum range, and Q-Space contains all modes between P^z and ∞
- Similar to lattice QCD approximating the continuum theory, where finite lattice spacing effects are accounted by high-dim operators.

An EFT expansion

 Partons in EFT expansion (all P dependence, a sort of regulator, cancels)

$$f(x,\mu) = \tilde{f}(x,P) \circ C\left(x,\frac{\mu}{P}\right) + \tilde{f}_2(x,P) \circ \frac{C_2\left(x,\frac{\mu}{P}\right)}{P^2} +$$

Calculating the x-dependence!

- Phenomenologically, the x-dependence of PDFs has been modelled or parametrized in all types of fitting.
- In EFT expansion, x-dependence is obtained point by point through calculation.

Relationship between LaMET and quasi distributions

- LaMET is a systematic expansion for calculating ALL parton properties of hadrons, including collinear PDFs, TMD-PDFs, GPDs, DA, as well as Light-Front Wave Functions.
- Quasi distributions are natural set up for carrying out LaMET, however, there are infinite many choices for making expansions due to universality.

Partons and critical phenomena

 Fourier trans. of PDFs gives a small-x behavior,

 $f(x) \rightarrow x^{-\alpha}$

- When FT back to position space, one has $C(\lambda) \sim \lambda^{\alpha-1}$
 - This corresponds to "infinite correlation" length

Going beyond collinear partons

TMD-PDFs

- A very important nucleon observable, many phenomenology related to spin physics (Sivers effect etc).
- It took sometime to figure out the correct definition

Echevarria, Idilbi, Scimemi (2013), Collins & Rogers (2013)

Quasi-TMDPDF and factorization

Ji et al., PRD91,074009 (2015); PRD99,114006(2019) Ji, Liu, Liu, PLB, 1911.03840

Ebert, Stewart, Zhao, PRD99,034505 (2019), JHEP09,037(2019); arXiv:1910.08569

$$\begin{split} \tilde{f}(x,b_{\perp},\mu,\zeta_z)\sqrt{S_r(b_{\perp},\mu)} \\ &= H\left(\frac{\zeta_z}{\mu^2}\right)e^{K(b_{\perp},\mu)\ln(\frac{\zeta_z}{\zeta})}f^{\mathrm{TMD}}(x,b_{\perp},\mu,\zeta) + \dots \end{split}$$

$$\mu \frac{d}{d\mu} \ln H\left(\frac{\zeta_z}{\mu^2}\right) = \Gamma_{\text{cusp}} \ln \frac{\zeta_z}{\mu^2} + \gamma_C$$

Soft factor

- Soft factor is not a parton distribution.
- It represents soft-radiation cross section for two opposite moving color charges.
- It involves two light-cone directions.
- It has been calculated to 3loops in pert. theory (H.X.Zhu et al)

Soft factor in LaMET:

 Approximating light-cone Wilson-lines by high-momentum states

Factorization of form-factor of light-meson

Form-factor of heavy-quark pair

soft factor on lattice

Q. A. Zhang et al, Lattice Parton Collaboration (LPC) Phys.Rev.Lett. 125 (2020) 19, 192001

Light-Front Wave-Functions

- LF quantization focuses on the WFs, from which everything can be calculated: a very ambitious goal! Brodsky et al. Phys. Rept. 301 (1998)
- However, there are a number of reasons this approach has not been very successful.
- LaMET provides the practical way to calculate non-perturbative WF, at least for lowest few components. Ji & Liu to be published.
- All WF can be computed as gauge-invariant matrix elements

$$\left\langle 0 \left| \widehat{O} \left(z_1, \vec{b}_1, z_2, \vec{b}_2 \dots, z_k, \vec{b}_k \right) \right| P \right\rangle$$

Conclusions

 Partons can be approximately systematically on lattice using a large-momentum hadron matrix elements.

$$\frac{\Lambda_{QCD}}{P} \ll 1$$

• LaMET3.0 (~ 5% error for x ~(0.1-0.9))

two-loop matching

P=3 GeV

Improved non-pert renormalization

• 1% accuracy in 10-20 years