



# Comparison of PB TMDs to Z + jet results

B, Bilin\*, L. Favart\*, P. Gras\*\*, H. Jung\*\*



\*IIHE-ULB, FNRS Bruxelles, Belgium \*\*CEA/Saclay, France \*\*DESY, Hamburg, Germany REF 2020 Online World



7 December 2020

#### f n r s LA LIBERTÉ DE CHERCHER EN TOUTE SÉCURITÉ !

Introduction







- → Z->II, (I=e, $\mu$ ) are among the cleanest final states experimentally
- → Allows probing various QCD effects by studying kinematics precisely
- $\rightarrow$  Important to study Z+ HF production at the LHC
  - $\rightarrow$  Can provide understanding of HF production
  - $\rightarrow$  Can provide understanding of soft QCD effects
    - ightarrow Comparison of sensitive variables with TMDs
- Study of angular variables play an important role in understanding those dynamics. (Δφ(Z,j)...)
- → In this talk, we present comparison with PB TMD method (Z+1j @NLO + PB TMD)
  - → Madgraph5\_amc@NLO generating Z+1j @ NLO
  - → Using Cascade v3, TMDLib v2.2.0
  - → <u>https://cascade.hepforge.org/</u>







# Measurements used in comparison

- → Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at  $\sqrt{s} = 8$  TeV (JHEP 04 (2017) 022)
- → Measurement of Z + b jet at 8 TeV (Eur. Phys. J. C (2017) 77: 751)
- → Measurement of associated production of a Z boson with charm or bottom quark jets @ 13 TeV (Phys. Rev. D 102, 032007 (2020))
- → Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at √s = 13 TeV (Eur. Phys. J. C 78 (2018) 965)

Z +j @8 TeV (JHEP 04 (2017) 022) p-p

بريرين



 $p_T^{\prime} > 20 \text{ GeV}, |\eta'| < 2.4 \quad 71 < M_{\prime\prime} < 111 \text{ GeV}$ 

 $p_T^{j} > 30 \text{ GeV}, |\eta^{j}| < 2.4$ 







 $d\sigma/d\Delta\phi(Z,j_1)$  [pb/rad]

MC/Data





## Z +b @8 TeV

p-p √s=8 TeV 19.8 fb<sup>-1</sup>



 $p_T^{j} > 30 \text{ GeV}, |\eta^{j}| < 2.4$ 



 $\rightarrow$  Low p<sub>T</sub>(Z) well described for the Z + >=1b-jet

→ Some tension in ratio to describe this region → Failing to describe low p<sub>T</sub>(Z) part for Z+ j case

Eur. Phys. J. C (2017) 77: 751

Z+1j @NLO + PB TMD

#### nrs

## Z +b @8 TeV



p-p √s=8 TeV

#### f n r s Z+ bjet, Z+cjet ratio Phys. Rev. D 102, 032007 (2020)

p-p √s=13 TeV 35.9 fb<sup>-1</sup>

p<sub>T</sub><sup>'</sup> >25 GeV, |η<sup>'</sup>|<2.4 71 <M<sub>//</sub><111 GeV

 $p_T^j > 30 \text{ GeV}, |\eta^j| < 2.4$ 

Ratios of cross sections, $\sigma(Z+c \text{ jets})/\sigma(Z+\text{ jets})$ ,  $\sigma(Z+b \text{ jets})/\sigma(Z+\text{ jets})$ ,  $\sigma(Z+c \text{ jets})/\sigma(Z+b \text{ jets})$ 



#### fnrs Z+ bjet, Z+cjet ratio



p-p √s=13 TeV



Z+ 1jet, Z pT

p-p √s=13 TeV 2.2 fb<sup>-1</sup>





- → Unlike Z + >=1b-jet, low pT spectrum for Z+1jet is not described well
- → not filled by PS, when the closest jet to Z is not the hardest in pT

Z+1j @NLO + PB TMD





Z+1j @NLO + PB TMD

Eur. Phys. J. C 78 (2018) 965

14 <sup>G</sup>





# Summary

- → Presented several measurements of Z+ j final state including Z+HF
- → Compared with PB-TMD predictions from Cascade + Madgraph5\_amc@NLO
- → Overall good description, better description of Z+b, Z+c cases
  - $\rightarrow$  Low  $\Delta \phi$  not described well for Z+light jet case

 $\rightarrow$  Important to include higher orders in ME to fill the missing piece









#### Thank you

# Z +j @8 TeV

p-p √s=8 TeV 19.8 fb<sup>-1</sup>



(JHEP 04 (2017) 022)



#### **Drell-Yan Measurements**





| Final state | Data                                          | $Z \to \ell \ell$ | Resonant background       |    |              | nd    | Nonresonant background |        |  |
|-------------|-----------------------------------------------|-------------------|---------------------------|----|--------------|-------|------------------------|--------|--|
| μμ          | $20.4	imes10^6$                               | $20.7 	imes 10^6$ |                           | 30 | $	imes 10^3$ |       | $41 	imes 10^3$        |        |  |
| ee          | $12.1 	imes 10^6$                             | $12.0 	imes 10^6$ | $19	imes 10^3$            |    |              |       | $26 	imes 10^3$        |        |  |
|             | Cross section                                 |                   | $\sigma \mathcal{B} [pb]$ |    |              |       |                        |        |  |
|             | $\sigma_{Z \to \mu \mu}$                      | 694               | $\pm$                     | 6  | (syst)       | $\pm$ | 17                     | (lumi) |  |
|             | $\sigma_{\mathrm{Z} \rightarrow \mathrm{ee}}$ | 712               | $\pm$                     | 10 | (syst)       | $\pm$ | 18                     | (lumi) |  |
|             | $\sigma_{Z \to \ell \ell}$                    | 699               | $\pm$                     | 5  | (syst)       | $\pm$ | 17                     | (lumi) |  |

S n

35.9 fb<sup>-1</sup>

## Differential Z p<sub>T</sub>

#### JHEP 12 (2019) 061







- $\rightarrow$  Data compared with several models
  - $\rightarrow$  MG5 amc@NLO+PY
    - 8 (Z +0,1,2 j @NLO +PS)
  - $\rightarrow$  ResBos, Geneva
  - $\rightarrow$  Powheg-MINLO
  - PB TMD  $\rightarrow$
  - $\rightarrow$  Z+1 jet at NNLO
  - $\rightarrow$  FEWZ

19 <sub>s</sub>

#### Differential φ\*

Angular variable strongly correlated to  $p_T$ Allows studying low pT in more detail



S

35.9 fb<sup>-1</sup>



JHEP 12 (2019) 061

Breakdown of systematics in ee and  $\mu\mu$  channels

20

20 <sub>g</sub>