Perturbative uncertainties in the Drell-Yan spectrum at low q_{T}

giuseppe bozzi

Università di Pavia and INFN, Pavia
in collaboration with Valerio Bertone \& Francesco Hautmann

RGEs in QGD

Generic RGE in QCD:

$$
\mathrm{R}=\left(\alpha_{s}, \mathrm{PDF}, \mathrm{TMD}\right)
$$

$$
\frac{d \ln R}{d \ln \mu}=\gamma\left(\alpha_{s}(\mu)\right)
$$

$$
\gamma\left(\alpha_{s}(\mu)\right)=\frac{\alpha_{s}(\mu)}{4 \pi} \sum_{n=0}^{k}\left(\frac{\alpha_{s}(\mu)}{4 \pi}\right)^{n} \gamma^{(n)}
$$

Start with α_{s}
$k=$ highest-order
known in β-expansion

$$
\frac{d \ln a_{s}}{d \ln \mu}=\bar{\beta}\left(a_{s}(\mu)\right)=a_{s}(\mu) \sum_{n=0}^{k} a_{s}^{n}(\mu) \beta^{(n)}
$$

Knowledge of $\beta^{(k)}$ allows to resum $\mathrm{N}^{\mathrm{k}} \mathrm{LL}$ tower of logs
Question: is it possible to find an analytical expression for each tower?

α_{s}

- Answer at LL: YES

$$
a_{s}^{\mathrm{LL}}(\mu)=\frac{a_{s}\left(\mu_{0}\right)}{1-\beta^{(0)} a_{s}\left(\mu_{0}\right) \ln \left(\frac{\mu}{\mu_{0}}\right)}
$$

- exact solution of $R G E$ for $k=0$
- sum of the full LL series
- Answer beyond LL: NO

No exact solution of RGE for $k>0$: transcendental equations

$$
\begin{gathered}
\operatorname{NLL}(\mathrm{k}=1) \quad-\frac{1}{\alpha_{s}(\mu)}+\frac{1}{\alpha_{s}\left(\mu_{0}\right)}+b_{1} \ln \left(\frac{\alpha_{s}\left(\mu_{\mathrm{s}}\right)\left(1+b_{1} \alpha_{s}(\mu)\right)}{\alpha_{s}(\mu)\left(1+b_{1} \alpha_{s}\left(\mu_{0}\right)\right)}\right)=\beta_{0} \ln \left(\frac{\mu}{\mu_{0}}\right) \\
\mathrm{NNLL}(\mathrm{k}=2) \quad-\frac{1}{\alpha_{s}(\mu)}+\frac{1}{\alpha_{s}\left(\mu_{0}\right)}+b_{1} \ln \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{0}\right)}\right)+\left(b_{1}^{2}-b_{2}\right)\left(\alpha_{s}(\mu)-\alpha_{s}\left(\mu_{0}\right)\right)=\beta_{0} \ln \left(\frac{\mu}{\mu_{0}}\right) \\
\text { Numerical implementations based on these equations } \\
\text { satisfy RGE exactly }
\end{gathered}
$$

α_{s}

But what if we insist on having an analytical expression?

Expand α_{s} in previous equations and solve to obtain

$$
\begin{aligned}
a_{s}^{\mathrm{NLL}}(\mu) & =a_{s}^{\mathrm{LL}}(\mu)\left[1-b_{1} a_{s}^{\mathrm{LL}}(\mu) \ln \left(\frac{a_{s}\left(\mu_{0}\right)}{a_{s}^{\mathrm{LL}}(\mu)}\right)\right] \\
a_{s}^{\mathrm{NNLL}}(\mu) & =a_{s}^{\mathrm{LL}}(\mu)\left[1+b_{1}\left[a_{s}^{\mathrm{NLL}}(\mu)+b_{1}\left(a_{s}^{\mathrm{LL}}(\mu)\right)^{2}\right] \ln \left(\frac{a_{s}^{\mathrm{LL}}(\mu)}{a_{s}\left(\mu_{0}\right)}\right)+\left(b_{2}-b_{1}^{2}\right) a_{s}^{\mathrm{LL}}(\mu)\left[a_{s}^{\mathrm{LL}}(\mu)-a_{s}\left(\mu_{0}\right)\right]\right]
\end{aligned}
$$

These equations satisfy $R G E$ for α_{s} UPTO subleading terms

The perturbative hysteresis: α_{s}

$$
a_{s}^{\mathrm{NLL}}(\mu)=a_{s}^{\mathrm{LL}}(\mu)\left[1-b_{1} a_{s}^{\mathrm{LL}}(\mu) \ln \left(\frac{a_{s}\left(\mu_{0}\right)}{a_{s}^{\mathrm{LL}}(\mu)}\right)\right]
$$

PDFs

- RGE for PDFs
- solution of RGE

$$
\begin{aligned}
f(\mu) & =\exp \left[\int_{\mu_{0}}^{\mu} d \ln \mu^{\prime} \gamma\left(a_{s}\left(\mu^{\prime}\right)\right)\right] f\left(\mu_{0}\right) \\
& =\exp \left[\sum_{n=0}^{k} \gamma^{(n)} \int_{\mu_{0}}^{\mu} d \ln \mu^{\prime} a_{s}^{n+1}\left(\mu^{\prime}\right)\right] f\left(\mu_{0}\right)
\end{aligned}
$$

γ expansion

$$
=\prod_{n=0}^{k} \exp \left[\gamma^{(n)} I_{n}\right] f\left(\mu_{0}\right),
$$

$$
I_{n}=\int_{a_{s}\left(\mu_{0}\right)}^{a_{s}(\mu)} d a_{s}\left(\frac{a_{s}^{n}}{\bar{\beta}\left(a_{s}\right)}\right) .
$$

Again: numerical vs. fully analytical solution

The perturbative hysteresis: PDF

$$
\begin{aligned}
& f^{\mathrm{NLL}}(\mu)=\left[1+\frac{1}{\beta^{(0)}}\left(\gamma^{(1)}-b_{1} \gamma^{(0)}\right)\left(a_{s}^{\mathrm{LL}}(\mu)-a_{s}\left(\mu_{0}\right)\right)\right]\left(\frac{a_{s}^{\mathrm{NLL}}(\mu)}{a_{s}\left(\mu_{0}\right)}\right)^{\frac{\gamma^{(0)}}{\beta^{(0)}}} f\left(\mu_{0}\right) .
\end{aligned}
$$

Sudakov

$$
S=-\int_{b_{0}^{2} / b^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}}\left[A\left(\alpha_{s}\left(q^{2}\right)\right) \ln \frac{M^{2}}{q^{2}}+\tilde{B}\left(\alpha_{s}\left(q^{2}\right)\right)\right]
$$

RGE evolution of TMDs
numerical α_{s} numerical Sudakov

$$
\ln \left(\frac{M^{2}}{q^{2}}\right)\left(A_{1} \alpha_{s}^{N L L}+A_{2}\left(\alpha_{s}^{N L L}\right)^{2}\right)+B_{1} \alpha_{s}^{N L L}
$$

soft-gluon resummation

example: NLL integrand

$$
\ln \left(\frac{M^{2}}{q^{2}}\right)\left(A_{1} \alpha_{s}^{N L L}+A_{2}\left(\alpha_{s}^{L L}\right)^{2}\right)+B_{1} \alpha_{s}^{L L}
$$

The perturbative hysteresis: Sudakov

- No difference at LL (as expected)
- No differences at low $b_{T}\left(\right.$ high $\left.q_{T}\right)$ because of \longrightarrow Modified logs: $\ln \left(\mu^{2} b^{2} / b_{0}^{2}+1\right)$
- Increasing difference at high $b_{T}\left(\right.$ low $\left.q_{T}\right)($?)

The perturbative hysteresis: Sudakov

- Numerical Sudakov
- Good convergence towards N3LL

Modified logs: $\ln \left(\mu^{2} b^{2} / b_{0}^{2}+1\right)$

The perturbative hysteresis: Sudakov

- Analytical Sudakov
- Faster convergence towards N3LL
- (N3LL - NNLL) $>($ NNLL - NLL $)(?)$
- What next?

Modified logs: $\ln \left(\mu^{2} b^{2} / b_{0}^{2}+1\right)$

Outlook

- Drell-Yan spectrum at low q_{T} is a perfect playground to exploit the full potentiality of the TMD and the soft-gluon resummation frameworks
- We are not suggesting the adoption of one particular framework: we simply want to better understand the differences and to give a fair estimate of theoretical uncertainties

Open questions

- Scale variation is usually employed to estimate theoretical uncertainties from subleading contributions: would it induce a kind of "double counting" due to the perturbative mismatch in analytical vs. numerical codes?
- Is this perturbative mismatch (at least partially) responsible for discrepancies we observe between TMD codes and soft-gluon resummation codes?
- Can we identify a sensible recipe to compare predictions based on the TMD framework and the soft-gluon resummation framework?

