Three-Reggeon ladders and four-loop

 amplitudes in the high-energy limitResummation, Evolution, Factorization 2020

G. Falcioni

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Amplitudes in the high-energy limit

High-energy limit

$$
\begin{aligned}
& s \gg-t \\
& u \simeq-s
\end{aligned}
$$

Large logarithms in the amplitude

$$
L=\frac{1}{2} \underbrace{\left(\log \frac{-s-i 0}{-t}+\log \frac{-u-i 0}{-t}\right)}_{\text {Signature even }}
$$

Expansion in loops ($a_{s}=\alpha_{s} / \pi$) and towers of logarithms

$$
\begin{array}{cccc}
\mathcal{M}=\mathcal{M}^{0}+a_{s} L \mathcal{M}^{(1,1)} & +a_{s} \mathcal{M}^{(1,0)} & \\
+a_{s}^{2} L^{2} \mathcal{M}^{(2,2)} & +a_{s}^{2} L \mathcal{M}^{(2,1)} & + & a_{s}^{2} \mathcal{M}^{(2,0)} \\
L L & & \mathrm{NLL} & \mathrm{NNLL}
\end{array}
$$

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Probing deep structures in QFT

Impressive progress in understanding the high-energy limit

- All orders at any multiplicities in planar $\mathcal{N}=4 \mathrm{sYM}$ (Caron-Huot et al. 2019)
- QCD in full colour: 4 points to 13 loops at NLL (Caron-Huot, Gardi, Reichel, Vernazza 2020)

Crucial input for the bootstrap programme

- Planar $\mathcal{N}=4$ (following Dixon, Drummond, Henn 2011)
- Infrared (IR) singularities to 3 loops in QCD (Almelid, Duhr, Gardi, McLeod, White 2018)

Focus here

High-energy amplitudes: 4 points to 4 loops at NNLL.

- IR singularities at 4 loops in QCD
- Real part of amplitudes in non-planar $\mathcal{N}=4$
- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Reggeon exchanges

Leading tower: one-Reggeon exchange in the t-channel (Lipatov;Fadin,Kuraev,Lipatov 1976)

$$
\frac{1}{t} \rightarrow \frac{1}{t}\left(\frac{s}{-t}\right)^{\frac{a_{s} C_{A}}{\epsilon} r_{r}}
$$

Leading Logarithms of the amplitude

$$
\mathcal{M}^{\mathrm{LL}}=\mathcal{M}^{0} e^{\frac{a_{S} C_{A} L}{\epsilon} r_{\Gamma}} \quad r_{\Gamma}=e^{\epsilon \gamma_{E}} \frac{\Gamma^{2}(1-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2 \epsilon)}
$$

Higher towers: compound states of multiple Reggeons. \mathcal{M} has Even $(+)$ and Odd (-) terms under $s \leftrightarrow u$
$\triangleright \mathcal{M}^{(+)}$immaginary with even number of Reggeons

- $\mathcal{M}^{(-)}$Purely real with odd number of Reggeons
- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Real (odd) amplitudes

At NLL $\mathcal{M}^{(-)}$is still given by a single-Reggeon exchange (Fadin, Kozlov, Reznichenko 2015).

Three-Reggeons states appear at NNLL

Observed in two-loop amplitudes (Del Duca, Glover 2001). Recent investigations up to three loops

- IR singularities (Del Duca, G.F, Magnea, Vernazza 2013-14;

Fadin 2016; Fadin, Lipatov 2017)

- Complete result (Caron-Huot, Gardi, Vernazza 2017)

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

New questions

- Can we compute the whole NNLL tower? Start looking into Four-loop amplitudes at NNLL

High-energy limit perspective

Does the three-Reggeon contribution exponentiate?

Beyond the high-energy limit

Directly relevant to bootstrap IR singularities

$$
\mathcal{M}=\mathbf{Z} \mathcal{H} \rightarrow \mathbb{I R} \text { finite }
$$

Constraint four-loop ansatz of \mathbf{Z} (Becher, Neubert 2019)

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

From particles to Wilson lines

Wilson lines key to compute high-energy processes (from Korchemskaya, Korchemsky 1995; Balitsky 1996).
Following (Caron-Huot 2013)

$$
\begin{aligned}
U^{\eta}(z) & =\mathcal{P} \exp \left[i g_{s} \mathbf{T}^{a} \int_{-\infty}^{+\infty} d x^{+} A_{+}^{a}\left(x^{+}, x^{-}=0, z\right)\right] \\
& \equiv e^{i g_{s} \mathbf{T}^{a} W^{a}(z)}
\end{aligned}
$$

- \mathbf{T}^{a} group generator in the parton representation.
- $\eta=L$ (implicit) rapidity cutoff.

Scattering states $\left|\psi_{i}\right\rangle$ are expanded in Reggeon fields W^{a}

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Scattering of Wilson lines

$$
\frac{i}{2 s} \frac{1}{Z_{i} Z_{j}} \mathcal{M}=\left\langle\psi_{j}\right| e^{-L H}\left|\psi_{i}\right\rangle \quad Z_{i} \text { collinear poles }
$$

- To leading order, Reggeons are free fields

$$
\left\langle W^{a}(q) \mid W^{b}(p)\right\rangle=\frac{i}{p^{2}} \delta^{a b} \delta^{2-2 \epsilon}(p-q)+\mathcal{O}\left(g^{2}\right)
$$

Structure of the hamiltonian at Leading Order in a_{s}

$$
H=\left(\begin{array}{cccc}
H_{1 \rightarrow 1} & 0 & H_{3 \rightarrow 1} & \cdots \\
0 & H_{2 \rightarrow 2} & 0 & \cdots \\
H_{1 \rightarrow 3} & 0 & H_{3 \rightarrow 3} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Diagonal elements start $\mathcal{O}\left(a_{s}\right)$
Suppressed Off-diagonal elements $\mathcal{O}\left(a_{s}^{2}\right)$

The NNLL reduced amplitude

Three-Reggeon contribution to the NNLL tower involves

- Balitsky-JIMWLK evolution at Leading Order
- Projectile and target states at Leading Order

Reduced amplitude: subtract single-Reggeon exchange

$$
\frac{i}{2 s} \hat{\mathcal{M}} \equiv\left\langle\psi_{j}\right| e^{-\left(H-H_{1 \rightarrow 1}\right) L}\left|\psi_{i}\right\rangle=\left\langle\psi_{j}\right| e^{-\hat{H} L}\left|\psi_{i}\right\rangle
$$

To all loop orders, $\hat{\mathcal{M}}^{(-, \text {NNLL })}$ is the sum of

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes

Three-Reggeon ladders

Two independent contributions

- Single kinematic scale $t . s$ is generated by evolution All the integrals are massless 4-loop propagators: gamma functions or computed with FORCER (Ruijl, Ueda, Vermaseren 2020)
- Problem: factorise the colour structure in universal operators acting on the tree level amplitude, with

$$
\mathbf{T}_{s}=\mathbf{T}_{1}+\mathbf{T}_{2} \quad \mathbf{T}_{t}=\mathbf{T}_{1}+\mathbf{T}_{4} \quad \mathbf{T}_{u}=\mathbf{T}_{1}+\mathbf{T}_{3}
$$

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

A colour puzzle

Outmost generators clearly associated to external particles

At lowest order there is no ambiguity

where $\mathbf{T}_{s-u}^{2}=\frac{\mathbf{T}_{s}^{2}-\mathbf{T}_{u}^{2}}{2}$.
Reduce entangled configurations using identities such as

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Three-Reggeon Ladders - Result

$$
\left\langle j_{3}\right| \hat{H}_{3 \rightarrow 3}^{2}\left|i_{3}\right\rangle=\frac{1}{144}\left[\frac{\mathbf{C}_{33}^{(4,-4)}}{\epsilon^{4}}+\frac{2 f_{\epsilon}}{\epsilon} \mathbf{C}_{33}^{(4,-1)}+\mathcal{O}(\epsilon)\right] \mathcal{M}^{(0)}
$$

- $f_{\epsilon}=\zeta_{3}+\frac{3}{2} \epsilon \zeta_{4}$ (appearing in every term at NNLL!)
- Colour operators \mathbf{T}_{t}^{2} and \mathbf{T}_{s-u}^{2} acting on $\mathcal{M}^{(0)}$
- Contribution of quartic Casimir

Three-Reggeon Ladders - Result

$$
\left\langle j_{3}\right| \hat{H}_{3 \rightarrow 3}^{2}\left|i_{3}\right\rangle=\frac{1}{144}\left[\frac{\mathbf{C}_{33}^{(4,-4)}}{\epsilon^{4}}+\frac{2 f_{\epsilon}}{\epsilon} \mathbf{C}_{33}^{(4,-1)}+\mathcal{O}(\epsilon)\right] \mathcal{M}^{(0)}
$$

- $f_{\epsilon}=\zeta_{3}+\frac{3}{2} \epsilon \zeta_{4}$ (appearing in every term at NNLL!)
- Colour operators \mathbf{T}_{t}^{2} and \mathbf{T}_{s-u}^{2} acting on $\mathcal{M}^{(0)}$
- Contribution of quartic Casimir

$$
\begin{aligned}
\mathbf{C}_{33}^{(4,-4)} & =6\left(17 C_{A} \mathbf{T}_{t}^{2}-6 C_{A}^{2}-6\left(\mathbf{T}_{t}^{2}\right)^{2}\right) \mathbf{C}_{33}^{(2)} \\
& -\frac{3}{4} \mathbf{T}_{s-u}^{2}\left(\mathbf{T}_{t}^{2}\right)^{2} \mathbf{T}_{s-u}^{2}+\frac{25}{144} C_{A}^{4}+\frac{1}{3} \frac{d_{A A}}{N_{A}}-3 C_{A}\left(\frac{d_{A R_{i}}}{N_{R_{i}}}+\frac{d_{A R_{j}}}{N_{R_{j}}}\right) \\
\mathbf{C}_{33}^{(4,-1)} & =18\left(521 C_{A} \mathbf{T}_{t}^{2}-300 C_{A}^{2}-220\left(\mathbf{T}_{t}^{2}\right)^{2}\right) \mathbf{C}_{33}^{(2)}-101 \mathbf{C}_{33}^{(4,-4)} \\
\mathbf{C}_{33}^{(2)} & =\frac{1}{24}\left(\mathbf{T}_{s-u}^{2}-\frac{C_{A}^{2}}{12}\right)
\end{aligned}
$$

Transitions to single Reggeons

To all orders, terms with a single Reggeon are $\propto \mathcal{M}^{(0)}$

- Colour must flow through a single Reggeon
- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Complete Reduced amplitude

A four-loop amplitude (almost) fitting in one line

$$
\begin{aligned}
& \hat{\mathcal{M}}^{(-, 4,2)}=\frac{r_{\Gamma}^{4} \pi^{2}}{144}\left[\frac{\mathbf{C}_{\mathcal{M}}^{(-4)}}{\epsilon^{4}}+\mathbf{C}_{\mathcal{M}}^{(-1)} \frac{f_{\epsilon}}{\epsilon}+\mathcal{O}(\epsilon)\right] \mathcal{M}^{(0)} \\
& \mathbf{C}_{\mathcal{M}}^{(-4)}=\frac{\mathbf{C}_{33}^{(4,-4)}}{2}-\frac{C_{A}^{4}}{72}-\frac{1}{6} \frac{d_{A A}}{N_{A}}+\frac{1}{2}\left(\frac{d_{A R_{i}}}{N_{R_{i}}}+\frac{d_{A R_{j}}}{N_{R_{j}}}\right) \\
& \mathbf{C}_{\mathcal{M}}^{(-1)}=\mathbf{C}_{33}^{(4,-1)}+\frac{101 C_{A}^{4}}{36}+\frac{110}{3} \frac{d_{A A}}{N_{A}}-104\left(\frac{d_{A R_{i}}}{N_{R_{i}}}+\frac{d_{A R_{j}}}{N_{R_{j}}}\right)
\end{aligned}
$$

Result holds in every gauge theory. Next steps

- Extract the universal infrared singularities
- Compute the odd amplitude in $\mathcal{N}=4$

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Factorisation of $\hat{\mathcal{M}}$

Divergences and finite parts

Isolate the universal IR divergences from the finite terms

$$
\mathcal{H}=\tilde{\mathbf{Z}}^{-1} e^{-H_{1 \rightarrow 1} L} \hat{\mathcal{M}},
$$

$\tilde{\mathbf{Z}}=\mathcal{P} \exp \left[-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \tilde{\boldsymbol{\Gamma}}\right] . \tilde{\boldsymbol{\Gamma}}$ soft anomalous dimension.
$\tilde{\boldsymbol{\Gamma}}=\frac{\gamma_{K}}{2}\left[L \mathbf{T}_{t}^{2}+i \pi \mathbf{T}_{s-u}^{2}\right]+\boldsymbol{\Delta}$
Four-loop soft anomalous dimension at NNLL

$$
\begin{aligned}
& \operatorname{Re}\left[\boldsymbol{\Delta}^{(4,2)}\right]=\zeta_{2} \zeta_{3} \mathbf{C}_{\Delta} \\
& \mathbf{C}_{\Delta}=\frac{\mathbf{T}_{t}^{2}\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s-u}^{2}\right]}{4}+\frac{3}{4}\left[\mathbf{T}_{s-u}^{2}, \mathbf{T}_{t}^{2}\right] \mathbf{T}_{t}^{2} \mathbf{T}_{s-u}^{2}+\left(\frac{d_{A A}}{N_{A}}-\frac{C_{A}^{4}}{24}\right)
\end{aligned}
$$

- Planar terms in $\left(\frac{d_{A A}}{N_{A}}-\frac{C_{A}^{4}}{24}\right)$ cancel
- Manifestly non-planar, new quartic Casimir in $\tilde{\boldsymbol{\Gamma}}$

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Finite parts in $\mathcal{N}=4$

Finite parts are theory dependent as they involve

- Two-loop impact factors
- $H_{1 \rightarrow 1}$ to three loops
both determined in (Caron-Huot, Gardi, Vernazza 2017) using three-loop ampliudes (Henn, Mistlberger 2016).

Result

Conclusions

- NNLL amplitudes feature exchanges of 3 Reggeons.
- Three-Reggeon contributions are predicted to all loops with LO Balitsky-JIMWLK equation!
- We computed three-Reggeon exchanges to 4 loops.
- Using this result we find
- New constraints on the IR divergences in four-loop QCD amplitudes.
- The real part of $2 \rightarrow 2$ amplitude in non-planar $\mathcal{N}=4 \mathrm{sYM}$ at 4 loops.
Interestingly, the non-planar terms in the finite parts are proportional to the IR divergent contributions.

Outlook

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Many directions for further investigation On the high-energy side

- Closer look at the origin of planar and non-planar contributions
- All-order iteration of the Balitsky-JIMWLK hamiltonian.
\rightarrow Resummation of the entire NNLL tower.
And towards general kinematics
- Bootstrapping IR singularities to four loops

- High-energy limit
- REF for Amplitudes
- Computing four-loop amplitudes
- Results and outlook

Thank you!

