Multi-parton scattering amplitudes beyond 3 loops

Anurag Tripathi
(IIT Hyderabad)

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Resummation, Evolution, Factorization 2020 (Online)
07 December 2020

Plan of the talk

- Webs in multi-parton amplitudes
- Properties of web mixing matrices
- Results for web mixing matrices at 4 loops
-Summary

Multi-parton Scattering Amplitude In IR limit

IR behaviour $\quad \leftrightarrow \quad$ Wilson line correlator

Soft matrix

Soft anomalous dimension

$$
\mathcal{S}_{n}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \equiv\langle 0| \prod_{k=1}^{n} \Phi_{\beta_{k}}(\infty, 0)|0\rangle
$$

$$
\mathcal{S}_{n}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\mathcal{P} \exp \left[-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \boldsymbol{\Gamma}_{n}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\lambda^{2}\right), \epsilon\right)\right]
$$

Diagrammatic Exponentiation (A complementary approach)

Sum over Feynman diagrams Kinematic factor $K(D)$ Color factor $C(D)$

$$
S_{n}\left(\gamma_{i}\right)=\sum_{D} K(D) C(D)
$$

Mitov, Sterman, Sung; 2010
Gardi, Laenen, Stavenga, White; 2010
Gardi, Smillie, White; 201I

$$
S_{n}\left(\gamma_{i}\right)=\exp \left[\mathscr{V}_{n}\left(\gamma_{i}\right)\right]
$$

Gardi, White; 2011
Dukes, Gardi, Steingrimsson, White; 2013

Gardi, Smillie, White; 2013
Same diagrams D, modified colour factors $\widetilde{C}(D) \quad \widetilde{W}\left(\gamma_{i}\right)=\sum_{D} K(D) \widetilde{C}(D)$

Dukes, Gardi, McAslan, Scott, White; 2016 See also: Vladimirov, 2014-2017 for Alternative approach

For Eikonal Form factors these are called webs
Gatheral; Frenkel, Taylor; Sterman

Multi-parton Webs

Welb (w) : A set of diagrams closed under permutations of the gluon attachments on the Wilson lines.
(Gardi, Smillie, White, et al, 2010-2013)

The exponent $W\left(\gamma_{i}\right)$ grouped into webs
$R_{w}\left(D, D^{\prime}\right)$
Web mixing matrix

$$
S_{n}=\exp \left(\sum w\right)
$$

$$
S_{n}=\exp \left(\sum_{D, D^{\prime} \in w} K(D) R_{w}\left(D, D^{\prime}\right) C(D)\right)
$$

Properties of web mixing matrices

(Gardi, Smillie, White, et al 2010-2013)
Idempotent $\quad R_{w}^{2}=R_{w}$, Projection Operators

Projector

Row sum rule

Column sum rule (Conjecture)
$R_{w}^{2}=R_{w}$, Projection Operators
Non-abelian exponentiation theorem.
Projects onto colour factors that correspond to fully connected gluon diagrams

$$
\sum_{D^{\prime}} R_{w}\left(D, D^{\prime}\right)=0
$$

$\mathrm{S}=1$
$\stackrel{\wedge}{\mathrm{s}} 1$
$\mathrm{S}=1$

$\sum_{D} s(D) R_{w}\left(D, D^{\prime}\right)=0$

Connection with Mathematical structures (Posets)
(Dukes, Gardi, McAslan, Scott, White)
\Longrightarrow
(Gardi, Smillie, White, 2013)

Mixing matrices

Cwebs

Replica Trick

Replicated correlator

Order N_{r} term

Combinatorics

 to extract ECF
Inhouse
 Mathematica Code

Set of diagrams built out of gluon correlators
N_{r} identical copies of gauge fields are introduced,
Wilson lines are replicated

Agarwal, Danish, Magnea, Pal, AT ; 2020

Gardi, Laenen, Stavenga, White, 2010 See also: Vladimirov, 2014-2017

$$
\begin{aligned}
\mathcal{S}_{n}^{\text {repl. }}\left(\gamma_{i}\right)=\left[\mathcal{S}_{n}\left(\gamma_{i}\right)\right]^{N_{r}} & =\exp \left[N_{r} \mathcal{W}_{n}\left(\gamma_{i}\right)\right] \\
& =\mathbf{1}+N_{r} \mathcal{W}_{n}\left(\gamma_{i}\right)+\mathcal{O}\left(N_{r}^{2}\right)
\end{aligned}
$$

- Assign replica number i to each connected gluon correlator
- Replica ordering operator to order colour generators \mathbf{T}_{k}^{i} on each line
- \# of hierarchies $h(m)$ between m replica numbers
-...
- Algorithm gives ECF

The algorithm from generation of diagrams \rightarrow computation ECF is implemented \rightarrow Mixing matrices

Results at 4 loops

Wilson line Correlators (Cwelos)	\# of webs	Largest dimension of mixing matrix
5 legs	9	24
4 legs	21	24
3 legs	23	36
2 legs	8	36

Loop order (m)	Maximum number of hierarchies
$\mathbf{1}$	$\mathbf{1}$
2	3
3	13
4	75
5	541
6	4683

$\begin{array}{ll}\text { Fubini numbers } \\ 1,3,13,75,541,4683, \ldots & \text { Generating Function of }\end{array} \quad \frac{1}{2-\exp (x)}-1 \equiv \sum_{m=1}^{\infty} h(m) \frac{x^{m}}{m!}$.

Results at 4 loops

(One of the 4-leg webs)

$$
\mathbf{W}_{4, \mathrm{I}}^{(1,0,1)}(1,1,2,2)
$$

Diagrams	Sequences	S-factors
C_{1}	$\{\{B A\},\{C D\}\}$	1
C_{2}	$\{\{B A\},\{D C\}\}$	0
C_{3}	$\{\{A B\},\{C D\}\}$	0
C_{4}	$\{\{A B\},\{D C\}\}$	1

$$
R=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 1 & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & 1 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right) \quad D=\left(\mathbf{1}_{3}, 0\right)
$$

Exponentiated

 Color factors$(Y C)_{1}=i f^{a b g} f^{c d g} f^{e d h} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{h}-i f^{a b g} f^{c d g} f^{c e j} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{j} \mathbf{T}_{4}^{d} \mathbf{T}_{4}^{e}$,
$(Y C)_{2}=-i f^{a b g} f^{c d g} f^{c e j} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{j} \mathbf{T}_{4}^{d} \mathbf{T}_{4}^{e}$,
$(Y C)_{3}=i f^{a b g} f^{c d g} f^{e d h} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{h}-f^{a b g} f^{c d g} f^{c e j} f^{e d h} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{j} \mathbf{T}_{4}^{h}$.

New Results at 4 loops

(3 and 2-leg webs)
AT et al (to appear)

Diagrams	Sequences	S-factors
C_{1}	$\{\{B A\},\{G F E\}\}$	0
C_{2}	$\{\{B A\},\{F G E\}\}$	0
C_{3}	$\{\{B A\},\{F E G\}\}$	1
C_{4}	$\{\{A B\},\{G F E\}\}$	1
C_{5}	$\{\{A B\},\{F G E\}\}$	0
C_{6}	$\{\{A B\},\{F E G\}\}$	0

$$
R=\left(\begin{array}{cccccc}
1 & 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & -\frac{1}{2} & 1 & 0 \\
0 & 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & 1
\end{array}\right) \quad D=\left(\mathbf{1}_{5}, 0\right)
$$

$$
\begin{aligned}
(Y C)_{1}= & i f^{a f k} f^{b c g} f^{e f g} \mathbf{T}_{1}^{b} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{k}+i f^{a e h} f^{b c g} f^{e f g} \mathbf{T}_{1}^{b} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{h} \mathbf{T}_{3}^{f} \\
& -i f^{a b m} f^{b c g} f^{e f g} \mathbf{T}_{1}^{m} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{f} \mathbf{T}_{3}^{a}
\end{aligned}
$$

Exponentiated Colour Factors

$$
(Y C)_{2}=i f^{a f k} f^{b c g} f^{e f g} \mathbf{T}_{1}^{b} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{k}-i f^{a b m} f^{b c g} f^{e f g} \mathbf{T}_{1}^{m} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{f} \mathbf{T}_{3}^{a}
$$

$$
(Y C)_{3}=-i f^{a b m} f^{b c g} f^{e f g} \mathbf{T}_{1}^{m} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{f} \mathbf{T}_{3}^{a}
$$

$$
(Y C)_{4}=i f^{a f k} f^{b c g} f^{e f g} \mathbf{T}_{1}^{a} \mathbf{T}_{1}^{b} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{k}+i f^{a e h} f^{b c g} f^{e f g} \mathbf{T}_{1}^{a} \mathbf{T}_{1}^{b} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{h} \mathbf{T}_{3}^{f}
$$

$$
(Y C)_{5}=i f^{a f k} f^{b c g} f^{e f g} \mathbf{T}_{1}^{a} \mathbf{T}_{1}^{b} \mathbf{T}_{2}^{c} \mathbf{T}_{3}^{e} \mathbf{T}_{3}^{k}
$$

Summary

- Wilson line correlators obey diagrammatic exponentiation in terms of Cwebs.
- We have computed the colour structure of multi-parton Cwebs at 4 loops for 5,4,3\&2 connected Wilson lines
- The mixing matrices obey the proven properties - Idempotency, Row sum rule, and Non-abelian exponentiation theorem.
- We observe that all the mixing matrices at 4 loops obey the conjectured Column sum rule.

Thank You!

Backup Slides

Soft Anomalous Dimension

IR behaviour of scattering amplitude \leftrightarrow Wilson line correlator

Soft matrix

$$
\mathcal{S}_{n}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \equiv\langle 0| \prod_{k=1}^{n} \Phi_{\beta_{k}}(\infty, 0)|0\rangle
$$

The Wilson line

$$
\Phi_{\beta}(\infty, 0) \equiv P \exp \left[\mathrm{i} g \int_{0}^{\infty} d \lambda \beta \cdot \mathbf{A}(\lambda \beta)\right]
$$

Soft anomalous dimension

$$
\mathcal{S}_{n}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\mathcal{P} \exp \left[-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \boldsymbol{\Gamma}_{n}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\lambda^{2}\right), \epsilon\right)\right]
$$

Multi-parton Webs

Welb (w) : A set of diagrams closed under permutations of the gluon attachments on the Wilson lines.

The exponent $W\left(\gamma_{i}\right)$ grouped into webs

$$
R_{w}\left(D, D^{\prime}\right)
$$

Web mixing matrix

A 3 loop web 4×4 mixing matrix

$$
\begin{aligned}
S_{n}\left(\gamma_{i}\right) & =\exp \left(\sum w\right) \\
& =\exp \left(\sum_{D, D^{\prime} \in w} K(D) R_{w}\left(D, D^{\prime}\right) C(D)\right)
\end{aligned}
$$

