

Introduction on CEPC tracker design requirements

Harald Fox and Yanyan Gao

UK workshop on HV-CMOS tracker for e+e- collider

University of Edinburgh, 10-Jan-2020

- Overview of the physics processes and charged particles kinematics
- Physics inputs for the tracker design
 - Occupancy and radiation
 - Momentum resolution
 - PID requirement on the dE/dx
 - Dynamic range
- Summary and conclusion

Accelerator parameters

• Z-pole running poses more stringent requirements: bunching spacing 15,000

Updated Parameters of Collider Ring since CDR

	Higgs		Z (2T)	
	CDR	Updated	CDR	Updated
Beam energy (GeV)	120		45.5	-
Synchrotron radiation loss/turn (GeV)	1.73	1.68	0.036	-
Piwinski angle	2.58	3.78	23.8	33
Number of particles/bunch N _e (10 ¹⁰)	15.0	17	8.0	15
Bunch number (bunch spacing)	242 (0.68µs)	218 (0.68µs)	12000	15000
Beam current (mA)	17.4	17.8	461.0	1081.4
Synchrotron radiation power /beam (MW)	30	-	16.5	38.6
Cell number/cavity	2		2	1
β function at IP $\beta_x{}^{\star}$ / $\beta_y{}^{\star}$ (m)	0.36/0.0015	0.33/0.001	0.2/0.001	-
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.89/0.0018	0.18/0.0016	
Beam size at IP σ_x / σ_y (µm)	20.9/0.068	17.1/0.042	6.0/0.04	-
Bunch length σ_z (mm)	3.26	3.93	8.5	11.8
Lifetime (hour)	0.67	0.22	2.1	1.8
Luminosity/IP L (1034 cm-2s-1)	2.93	5.2	32.1	101.6
Luminosity increase factor: × 1.8 FCC-ee: 8 × 3.2				

Physics processes

The "Baseline" Tracker in CDR

Except FTD 1+2, all use 2 layers of back-to-back mounted single-sided strips at an stereo angle Sensor: 10 × 10 cm², pitch 50µm, Thickness <200µm <u>Strip design with ~300-400 µm thickness per layer alone gives 0.3-0.4% X₀</u> Effective silicon area for strip: 160m², pixelated design reduces to 80m²

Event level charged particle multiplicity and kinematics

Higgs running @ 240 GeV

pT > 0.5 GeV

For the Z-pole running, track pT < 45 GeV, except a bit lower multiplicity

Hit occupancy and radiation

• Caveat

- There are many different numbers in the literature, often inconsistent due to
 - CDR assumes a different Int Luminosity
 - A factor of 2 less Higgs L, a factor of 8 less in the Z inst. L
 - It is not always clear if a safety factor of 10 has been applied
- I will summarise some numbers in the next a few slides
 - Hopefully we can sort them out and arrive at a reasonable range to consider at the end

Estimate of occupancy

	Operation mode	H (240)	W(160)	Z (91)
VtxLI: I.6cm, z =6.25cm → A = I26 cm ²	Hit density (hits \cdot cm ⁻² \cdot BX ⁻¹)	2.4	2.3	0.25
	Bunching spacing (µs)	0.68	0.21	0.025
	Occupancy (%)	0.08	0.25	0.23

R=1.6cm, |z|

Table 4.2: Occupancies of the first vertex detector layer at different machine operation energies: 240 GeV for ZH production, 160 GeV near W-pair threshold and 91 GeV for Z-pole.

Assumption: Pixel dimension: 50 μ m \times 350 μ m, readout time: 10us, Cluster size: 9 hits per track

	Operation mode	H (240)	W (160)	Z (91)
Not from simulation, inferred from above table	Track multiplicity (BX ⁻¹)	310	300	32
	Bunching spacing (ns)	680	210	25
SIT-LI area 0.7m ²	SIT-L1 occupancy (%)	0.19	0.58	0.52
\rightarrow 40M pixels	FTD-D1 occupancy (%)	0.17	0.54	0.48

Table 4.6: Estimated occupancies of the first layers of the SIT (SIT-L1) and the FTD (FTD-D1). See context for more details.

With the same assumption:	SIT-L2 (2.5m ²) occupancy	5×10-4	1.5×10-3	I.4×I0-3
	SET (52m ²) occupancy	2.5×10-5	7.8 ×10 ⁻⁵	7×10-5

*My calculation for SIT-L1 Higgs: 0.10% = 310*9*(10e3/680)/(2*TMath::Pi()*0.15*0.75/(50*350*1e-12))

Radiation at the first vertex layer update in Nov 2019

Combine	Results	<u>H. Shi's talk</u>	reli	
Higgs Backgrounds on With a safety factor of	1 st layer of Vertex.		1/1/1/	ar.
Background Type	Hit Density(<i>cm</i> ⁻² · <i>BX</i> ⁻¹)	TID(krad ∙ yr ^{−1})	1 MeV equivalent O_{r} neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$	9
γγ→ee Pair production	2.26	591.14	1.11e+12	
Synchrotron Radiation	0.026	15.65		
Radiative Bhabha	0.34	592.66	1.44e+12	
Beam Gas	36.8372	39901.139	9.65e+13	
Beam Thermal Photon	2.31	2325.49	5.48e+12	Significantly under-estimated
Total	41.7732	43426.079	10.453e+13	in the CDR Not affecting
2019/11/19	CEPC Works	shop 2019, H. Shi	36	tracker

Radiation estimate from CDR

• For SET and ETD: TID < IkRad/year, NIEL < 10^{10} MeV n_{eq} /cm². year

Figure 9.8: Total ionizing dose (TID) and non-ionizing energy loss (NIEL) distribution in r - z for the machine operation at $\sqrt{s} = 240$ GeV. The white lines indicate the locations of the vertex detector (VTX), the forward tracking disks (FTD) and the silicon inner tracker (SIT).

Momentum resolution requirements

- Main requirement is on the momentum resolution
 - pT < 50 GeV: dominated by Multiple scattering
 - pT > 50 GeV: dominated by single-point resolution

See Manqi's talk: https://indico.ihep.ac.cn/event/9960/session/5/contribution/184/material/slides/0.pdf

Higgs mass measurement

- The recoil mass determines the Higgs mass resolution
 - Mostly H→bb

Key requirement: Tracker resolution comparable to beam spread

Leptons and charge hadrons from Higgs

Z(ee)H

Ζ(μμ)Η

- The tagging of the $Z \rightarrow ee/\mu\mu$ depends largely on efficiency
- It is the particles from the Higgs decays that matter for the Higgs recoil
 - pT range [20-80] GeV

Boson Mass Resolution in hadronic decays

Minimum requirement: $2\sigma W/Z$ seperation

Has this been achieved from simulation?

- Big caveat: still assumes 3.5T
 - Based on the baseline design..

dE/dx for PID

- Aim for $3\sigma K/\pi$ and K/p separation for flavour physics
 - Improve b/c-tagging for the Higgs running, and more importantly PID for Z-pole running
 - Currently with the baseline detector, TPC + Ecal TOF information (Link to the EPJC paper)

Baseline dE/dx performance

Dynamic range

- These are for the signatures that can leave large dE/dx in the tracker
- Areas of interest
 - Searches for stable BSM particles with large or fractional charges
 - Searches for quasi-stable heavy BSM particles

Summary

	With TPC	All silicon		
Barrel	SIT-L1: R=0.15, L=0.75 \rightarrow A=0.7m ² SIT-L2: R=0.30, L=1.33 \rightarrow A=2.5m ² SET: R=1.81, L=4.70 \rightarrow A=53m ²	?		
Endcap	FTD DI-D5: I.8 n ETD: R _{out} =I.82, R _{in} =0.42m	FTD DI-D5: I.8 m ² ETD: R_{out} =I.82, R_{in} =0.42m \rightarrow A=20 m ²		
σ sp (rφ)	7 μm			
$\sigma_{ ext{SP}(extsf{Z})}$	Very loose ~ 100 µm			
Timing	25 ns			
Max* Occupancy 🛉	SIT-L1: 0.6%, SIT-L2: 10-3, SET: 10-4			
Radiation	TID ~< IkRad/year, NIEL ~< 10 ¹⁰ I MeV neq /cm ² . year			
dE/dX	-	2-3% @ _P T [2-10]		
X/X ₀	0.65% Barrel 0.5-0.65% Endcap	?		

*Assumption: Pixel dimension: 50 $\mu m \times$ 350 $\mu m, \ readout \ time: 10us, \ Cluster \ size: 9 hits \ per \ track$

Documentations

- Most of this material came from the CEPC Physics and Detector CDR
 - <u>https://arxiv.org/pdf/1811.10545.pdf</u>
 - However this was very vague and very much up for discussions.

Extra slides

Radiation - off energy beam

Off Energy Beam

Z-pole running physics summary

Precision Electroweak Measurements at the CEPC

Overview slide in Nov 2019 workshop