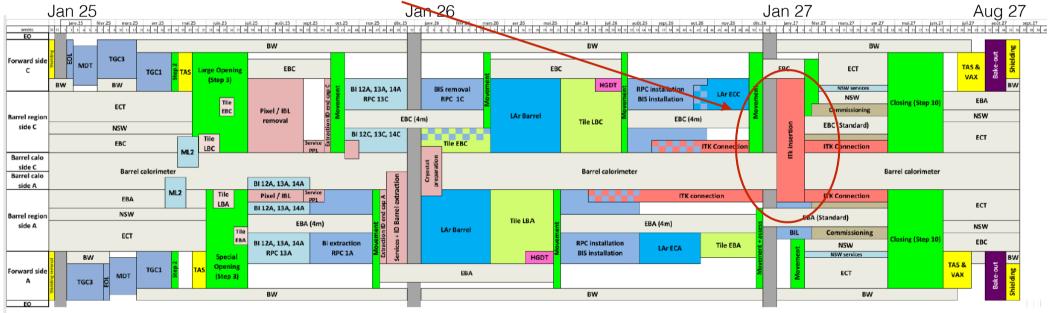
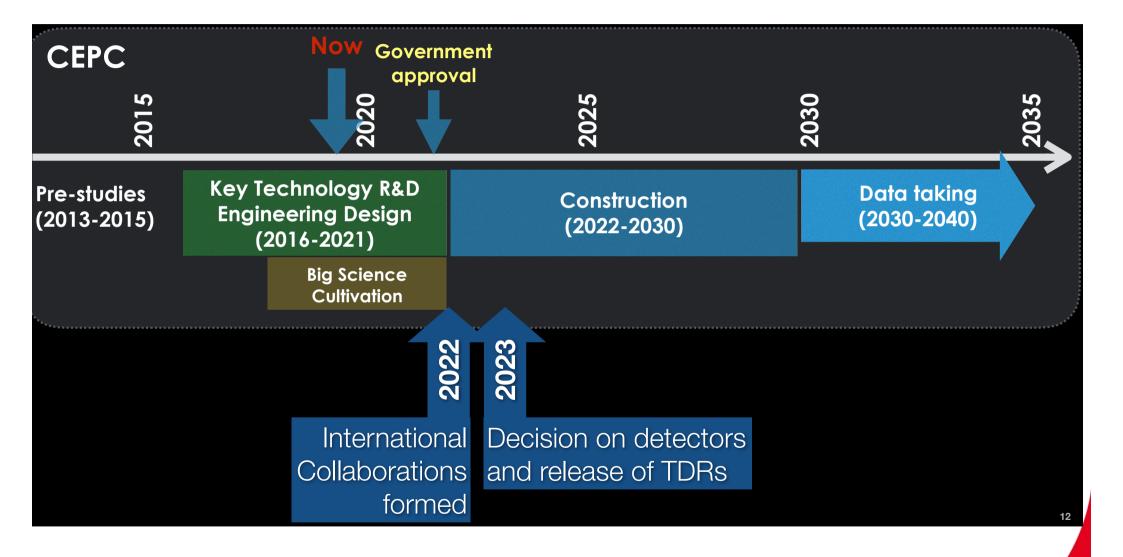
Silicon Tracker R&D

UK Meeting 10 January 2020, Edinburgh


Harald Fox

Α


Oct 1st statusing		2023 2024		2025	2026	2027	
		j fmamjjasond	j fmamjjasond	j fmamjjason	d j fmam j j a s o n o	j fmamjjasond	
After Statusing	Pixel	Pixel (July 2019 baseline)					
	Strip	Strip re-baseli	ned schedule				
	ITk			B+EC	O/Linsertion	project Float	

ITk insertion in ATLAS January 2027

CEPC International Detector R&D Committee (IDRC)

Committee: 16 members

In Beijing

Dave Newbold, UK, RAL (chair) Jim Brau, USA, Oregon Brian Foster, UK, Oxford Liang Han, China, USTC Andreas Schopper, CERN, CERN Steinar Stapnes, CERN, CERN Hitoshi Yamamoto, Japan, Tohoku

By Vidyo

Valter Bonvicini, Italy, Trieste Ariella Cattai, CERN, CERN Cristinel Diaconu, France, Marseille Abe Seiden, USA, UCSC Laurent Serin, France, LAL Roberto Tenchini, Italy, INFN Ivan Villa Alvarez, Spain, Santader

Excused from first meeting

Harvey Newman, USA, Caltech Marcel Stanitzki, Germany, DESY

CEPC International Detector R&D Committee (IDRC)

First meeting happened on Tuesday, Nov 19

https://indico.ihep.ac.cn/event/10941/

Organizational Meeting:

Key tasks of this inaugural meeting were:

- To establish the working mode of the panel
- To review the current catalogue of R&D activities

• To provide initial feedback to the project leadership on the shape and scale of the R&D programme, and on short-term priorities

• To identify further information the committee will need in the future.

Recommendations:

1. The project leadership and IDRC should assemble a coherent list of R&D activities, such that the presence of gaps and overlaps can be determined and addressed

- 2. Each current R&D project should provide, before the end of 2019, key information to the IDRC:
 - •The objectives of the project
 - •The anticipated schedule on which the objectives will be met
 - •The funding available to the project, and the leadership arrangements within it
 - •The extent to which the project is a CEPC-specific development

We added:

•Manpower resources available for the project, including type (student, faculty, engineer, etc) and FTE

6 - MDI

7 - TDAQ

8 - Software and Computing

Plan: - Vertex 2 - Tracker 1) Collect missing documents by mid January 2.1 - TPC 2.2 - Silicon Tracker 2.3 - Drift Chamber 3 - Calorimeter 2) Compile into one single document 3.1 - ECAL Calorimeter and provide to detector R&D committee before end of January 3.2 - HCAL Calorimeter 3.3 - DR Calorimeter 4 - Muon Detector 5 - Solenoid

3) Discuss with committee next steps, including proposal submission procedure

Joao, CEPC Workshop in Beijing

Some key R&D topics

- Machine Detector Interface
- Luminosity meter (LumiCal)
- Silicon Vertex (material budget versus resolution versus cooling)
- Services design and integration
- Tracker

Transparency <---> reliability/resolution

- Time Projection Chamber
 - Ion back flow and field distortion is a major problem to operate at the Z pole and 2 Tesla
- Drift Chamber
 - Can it cope with the high rates at the Z pole? Enough resolution?
- Full silicon tracker \rightarrow need manpower increase to exploit this option
 - Are we adding too much material?
 - What about particle identification? Does it really matter?

Strawman's Proposal

Task num! Name

Description

2.2.1	CMOS pixel sensor	Full size CMOS pixel sensor for the silicon tracker detector
2.2.1.1	ATLASPix3/FCEPCPix1	Evolving Chip Design of ATLASPix3
2.2.1.2	FCEPC40Pix	40nm/50nm design with SMIC
2.2.1.3	SUPix	Bottom-up chip design
2.2.1.4	Sensor Powering	Serial/DC-DC powering
2.2.2	Readout electronics & DAQ	Data throughput and 680ns / 25ns readout of the detector
2.2.2.1	Stave Flex	Design and test of bus tape
2.2.2.2	YARR	Adaption and running of YARR
2.2.2.3	Felix	Adaption and running of Felix
2.2.3	Low-mass staves	Low-mass support and cooling structure for sensors
2.2.3.1	Ti-pipes/CO2 cooling	Manufacture and testing of Ti cooling pipes and stave design
2.2.3.2	Water cooling	Manufacture and testing of water cooling pipes and stave design
2.2.3.3	Microchannel cooling	Manufacture and testing of micro channel cooling and stave design
2.2.3.4	End-of-stave cooling	Manufacture and testing of end of stave cooling option
2.2.3.5	Air cooling	Manufacture and testing of air cooled staves and overall design
2.2.3.6	Evaluation and measuremen	Powering and measurements at various prototypes
2.2.4	Mechanical structure	Low-mass mechanical support structure
2.2.5	Module building	Pick and Place options for automatic building
2.2.6	Detector Simulation	Investigate the detector design with physics benchmark processes.
2.2.7	System test	Test of full system, including beam tests

Joao's Manpower List

Ac=Academic	
AP=Applied Physicist	Fraction of time averaged over the year in FTEs
Eng=Engineer	FTE = Full Time Equivalent
Tech=Technician	Example:
St=Student	An egineer works full time on a flex design for 5 wee
	The FTE is (about) 5/50=0.1

Institute	Name	Туре	Task	Task Short	Comment	2020	2021	2022	2023
MyInstitute	MvName	Ac	2.2.3.1	Ti/CO2	Stave design with Ti-pipes	0.2	0.2	0.2	0.2
MyInstitute	•	Ac	2.2.7	System	Cosmic and beam tests	0.2	0.2	0.2	0.2
•	, Senior Staff Name	AP	2.2.1.3	SUPix	Analog amplifier design	0.1			
MyInstitute	Senior Staff Name	AP	2.2.1.4	Serial/DC-D	C Determining voltage drops for serial powering				
MyInstitute	PostDoc1Name	AP	2.2.3.5	Air	Cooling power estimation				
MyInstitute	PostDoc2 Name	AP	2.2.2.2	YARR	Adaptin YARR fo SUPix	0.1			
MyInstitute	Engineer Name	Eng	2.2.2.1	Flex	Design of data bus	0.1			
MyInstitute	Student Name	St	2.2.6	Simulation	X0 as function of eta for CO2 stave	0.5	1	0.75	

Organisation

<u>cepc_cmos_tracker@maillist.ihep.ac.cn</u> cepc-physdet@maillist.ihep.ac.cn JISC e-mail list FCEPC-general@jiscm.com