

ATLASPix3 – A full Reticle Sized Monolithic Pixel Detector

Rudolf Schimassek, Ivan Perić

Institute for Data Processing and Electronics (IPE)

Outline

- Introduction to Monolithic HV-CMOS Detectors
- Development of the ATLASPix Detectors
- Lab Measurements on ATLASPix3
- Beam Test at DESY with ATLASPix3 Telescope

Hybrid ↔ Monolithic Detector

- Standard hybrid pixel detector:
 - Bump bond for signal transmission
 - Passive sensor
- Monolithic HV-CMOS Detector:
 - Integrated sensor with readout electronics on the same die
 - Electronics inside sensing diode
 - Charge collection by drift with high voltage

standard hybrid Detector monolithic Detector

Hybrid ↔ Monolithic Detector

- HV-CMOS Sensor:
 - Charge Collection between psubstrate and deep n-well
 - HV p-sub contact on top side is the common implementation
 - Electronics isolated against HV inside deep n-well as "floating logic"
 - Implemented in commercial processes
 - large factory output available
 - Chip size limited by reticle size:

~ (2 x 2) cm²

Electronics

FCEPC Meeting Edinburgh 2020 Institute for Data Processing and Electronics (IPE)

Monolithic HV-CMOS Detectors

- Small material budget
- Pixel size not limited by bump bonds
- Part of the electronics directly inside the pixels (amplifier, comparator)
- Two regions:
 - Pixel matrix (sensitive)
 - Amplifier, comparator, tuning structures
 - Periphery (not sensitive):
 - readout logic, buffers, configuration registers

Components of a Monolithic Detector

- Pixel electronics
 - Amplifier
 - Comparator
- Readout
 - Signal buffers
 - State machine
- Configuration registers
- Biasing structures
- Tuning structures

pixel diode amplifier reference voltage

- Closed system
 - Testing structures need to be foreseen in the design to be measurable

THE ATLASPIX DETECTORS

7/23 08.01.20 R. Schimassek – ATLASPix3

FCEPC Meeting Edinburgh 2020 Institute for Data Processing and Electronics (IPE)

The ATLASPix Detectors

- Development of monolithic Detectors started in 2014 with the HVStripV1
- ATLASPix Development line:
 - large scale prototypes
 - started in 2017
 - design target: ATLAS ITk Upgrade Layer 4

Karlsruhe Institute of Technology

ATLASPix3

- Single matrix: 132 x 372 pixel
 - Pixel size 150 x 50 µm²
- Column-drain readout with and without trigger
- Radiation hard design with SEU ^E tolerant global memory [♀]
- 3 bit tuning DAC per pixel plus enable bit
- Several configuration methods for different wire count constraints (serial, SPI, single line)

FCEPC Meeting Edinburgh 2020 Institute for Data Processing and Electronics (IPE)

ATLASPix3 – Readout Structure

- Triggered and triggerless readout possible via two concurrent readout structures
 - separate control units
 - Configuration via SEU tolerant registers
- Data transmitted:
 - triggerless: 8/10b Aurora encoded
 - triggered: 64/66b Aurora encoded
- Readout was optimised using verilog and ROME simulations

The ATLASPix Detectors

- Required features for ATLAS (with first implementation):
 - Sorted readout (ATLASPix2) •
 - Triggered readout • (ATLASPix1 M2 / ATLASPix3)
 - RD53 compatibility (ATLASPix3) •
 - Data encoding (64/66 bit Aurora encoding)
 - Command decoder
 - Quad module compatibility ٠ (ATLASPix3)

Chip 1

data

confia

trigger

Chip 2

ATLASPIX3

12/23 08.01.20 R. Schimassek – ATLASPix3

FCEPC Meeting Edinburgh 2020 Institute for Data Processing and Electronics (IPE)

Lab Measurement Setup

- Artrix-7 FPGA board
- GECCO adapter board (GEneric sensor Configuration and COntrol System)
 - PCle connector
 - Highly modular with function cards
 - No cable connections to carrier PCB
- ATLASPix3 carrier PCB
- Firmware
 - Chip configuration
 - Data decoding and reduction
- Software (Qt based)

FCEPC Meeting Edinburgh 2020 Institute for Data Processing and Electronics (IPE)

ATLASPix3 Measurements

- Serial and SPI configuration tested to work
- RAM writing is working
- Untriggered readout tested to work at 400 Mbps (DDR, results in 25 ns time stamp)

FCEPC Meeting Edinburgh 2020 Institute for Data Processing and Electronics (IPE)

Threshold and Noise Definitions

- Charge injections of increasing strength are sent into a pixel
- Count number of detected signals → detection efficiency
- Shifted and scaled gaussian error function is fitted to the data points

Threshold Distribution

- Using untriggered digital readout and charge injections, a threshold scan has been performed for the whole matrix
- Duration for whole matrix (49104 pixels): 7 hours
 - Limited by USB connection in the measurement setup

0.1E 0.05

Detection threshold changes • linearly with the tuning DACs settings

 The colour axis is the number of pixels in a bin

Matrix Tuning

FCEPC Meeting Edinburgh 2020

Institute for Data Processing and Electronics (IPE)

Matrix Tuning

- In case the signal to measure are large, the tuning DACs can be used to correct for timing differences:
 - Limited amplifier current \rightarrow finite rise time
 - Different threshold \rightarrow also different timing
 - Signals of interest large \rightarrow threshold level not important \rightarrow TDAC useable for timing
- An additional means in addition to delay difference compensation in the design

⁵⁵Fe Source Test

- ⁵⁵Fe decay signal equals 0.3V of charge injection
- Threshold lowered to get sensitive to these signals
- On single pixel level, thresholds of about a quarter of an ⁵⁵Fe decay can be achieved without noise

0.2

Injection (in V)

0.3

-0,1

0.4

ATLASPix3 Telescope

- For a beam test at DESY, a compact four layer telescope was built based on ATLASPix3 sensors
- Uses the same carrier PCB as single chip setup
- Read out by one Artrix-7 via the GECCO board

ATLASPix3 Telescope

- 7 GeV electron beam at DESY
- Time over Threshold (ToT) is working on all four layers
- Plots for all pixels on a chip combined
- Jitter due to different time stamp speeds for rising and falling edge

ATLASPix3 Telescope

- Correlation visible between all layers (example plots)
- Cut off due to analysis script

 Major part of the analysis still to be done

Conclusions

- ATLASPix3 is a full reticle, single matrix detector
- The detector is working and has a high yield
- Trimming is possible to compensate for threshold and timing differences
- A four layer beam telescope was developed and is operational

BACKUP

24/23 08.01.20 R. Schimassek – ATLASPix3

FCEPC Meeting Edinburgh 2020 Institute for Data Processing and Electronics (IPE)

Development of HVCMOS Detectors

Development of HVCMOS Detectors

- Development started 2011 with active CMOS sensors:
 - Capacitively Coupled Pixel Detector (CCPD)
- switched to monolithic detectors in 2014 (HVStripV1)
- 3 lines of development:
 - CCPD sensors
 - ATLAS ITk prototypes (ATLASPix)
 - Concept evaluation detectors / other projects

Towards ATLASPix3 – Architecture Changes

- Optimisation of memory sizes and SM using ATHENA / Geant4 data for ATLAS ITk layout using ROME
- Introduction of trigger table and Aurora encoder FIFO
- Triggered column-drain readout with separation of hit buffers and trigger buffers
- Changed readout state machine (SM) for more efficient readout

Towards ATLASPix3 – Architecture Changes

- Decision for Column-Drain Readout:
 - ATLAS layer 4 hit rate too low/clusters too small to gain from PPtB benefits
 - Simpler integration of additional per-pixel information (ToT)

Towards ATLASPix3 – Architecture Changes

- Dimensioning of the trigger buffers depends on trigger delay and cluster size
- Reducing the data word size to 32 bit effectively doubles the bandwidth improving the efficiency of the readout

IC and Detector Lab at KIT

Trigger Delay: 25 µs

Buffer Fill

100

450 stuno 400 O

350 300

250

200

100 50

ATLASPix3 – The Submitted Design

- Triggered and triggerless readout possible via two concurrent readout structures
 - separate control units
 - Configuration via SEU tolerant registers
- Data transmitted:
 - Row address 9 bit
 - Column address 8 bit
 - Time stamp 10 bit
 - Time over Threshold 7 bit

total per pixel hit: 34 bit

ATLASPix3 – The Submitted Design

- Data transmission in 32 bit words:
 - beginning-of-data word
 - Hit word
 - End-of-event word
 - Spacing word
- Multiplexer structure to use full width of the Aurora code
- Spacer words used to make event word number even
- Configurable data contents

ATLASPix3 – The Submitted Design

- Slow Control:
 - Shift registers contain chip configuration and enable read/write to pixel RAM
 - Triple redundant shift register elements for SEU tolerance
- Option to bypass the command decoder and access the shift register signals directly
- The 160 Mbps command transmission is used to recover the 160 MHz clock

Pixel	$150 \times 50 \ \mu m^2$
Hit Buffer (in double column)	75 x 4.2 μm²
Trigger Buffer (in double column)	$75 \times 15 \ \mu m^2$

The ROME Simulation Framework

- Versatile Readout Architecture Simulation for Synchronous Detectors
 - Dynamic testing instead of static bandwidth calculations
- Optional use of ATLAS ITk physics simulation data
- Complete logging for user defined offline analysis
- Find rate capabilities, bottlenecks, shortcomings, ...

Available at: https://git.scc.kit.edu/jl1038/Readout_Simulation

FCEPC Meeting Edinburgh 2020 Institute for Data Processing and Electronics (IPE)

ATLASPix3 – State Machine Variations

- Idea: stop the readout of the Column Buffers to the Aurora FIFO if it is full
 - One additional state in state machine 1
- Effect:
 - State Machine 1 can run faster than state machine 3
 - Compensation for fluctuating number of hits per time

120 buffers/column, 40 MHz readout, 3 MHz trigger rate, 16 buffer trigger table

Effects of State Machie Changes – Aurora FIFO

- The Waiting State pauses the writing of hits to the Aurora FIFO
- for 64 bit data sets
- The 4 remaining lost hits originate from the implementation (End-of-Event Word sent in LoadColumn state)
- Better utilisation of output bandwidth

