Cooling Examples

SiTracker Meeting 7 January 2020

Harald Fox

Power & Cooling

ALICE:

- small fill factor CMOS design
- 40mW/cm²
- Polyimid cooling pipe
- Water coolant
 - max 500mW/cm²
 - 150mW/cm² cooling power
 - (50mW/cm² for end-of-stave cooling)

ATLAS:

- >350 mW/cm²
- bi-phase CO2 as coolant
- Ti cooling pipe

ATLASPix3:

- large fill factor CMOS design
- high efficiency and 25ns demonstrated!

- 140mW/cm² w/o serial powering
 - amplifier + comparator / digital 1.25V*100mA + 1.8V*250mA
 - comparator in NMOS consumes power
 - MuPix uses CMOS in periphery, better in power
 - original estimate was ~340 mW/cm²
 - Caveat: Power estimated at what occupancy?
- Power depends on readout speed and occupancy!
- CMOS can run at high ΔT
- ATLASPix is optimised for radiation hardness. This design choice can be traded against power consumption

CEPC tracker designs: TPC/Si

Baseline tracker design: TPC

and 3 layers / 5 disks of silicon sensors,

5.12 + 19.8 (ETD) + 53.5 (SET) = 78.4 m² in CMOS pixels

Detector		Radiu	s <i>R</i> [mm]	$\pm z$ [mm]	Material budget $[X_0]$
SIT	Layer 1		153	371.3	0.65%
511	Layer 2	300		664.9	0.65%
SET	Layer 3	1	811	2350	0.65%
		$oldsymbol{R}_{ ext{in}}$	$\boldsymbol{R}_{ ext{out}}$		
	Disk 1	39	151.9	220	0.50%
	Disk 2	49.6	151.9	371.3	0.50%
FTD	Disk 3	70.1	298.9	644.9	0.65%
	Disk 4	79.3	309	846	0.65%
	Disk 5	92.7	309	1057.5	0.65%
ETD	Disk	419.3	1822.7	2420	0.65%

Operation mode	H (240)	W (160)	Z (91)	
Track multiplicity (BX ⁻¹)	310	300	32	
Bunching spacing (ns)	680	210	25	
SIT-L1 occupancy (%)	0.19	0.58	0.52	
FTD-D1 occupancy (%)	0.17	0.54	0.48	

 Table 4.6: Estimated occupancies of the first layers of the SIT (SIT-L1) and the FTD (FTD-D1). See context for more details.

40 - 300 mW/cm² power consumption

For 5 - 80m² we have to plan with 2 - 32kW of power

ClicDet: Air Cooling

Assumptions: 50mW/cm²; vertex detector; barrel only; airflow between layers

2.2 - 12 m/s

Edge from laminar \rightarrow turbulent flow

CLIC Air Cooling

One of the main challenges of using gas cooling is to achieve a uniform gas delivery to all detector surfaces whilst minimizing the amount of material in the form of ducts/pipes.

Alice: Air Cooling

Cooling System Requirements: Air Circulation and Thermal Shield

Requirement	Air Circulatio	n
Flow	 Φ ~ 150 m³/h IB airflow 12 m³/h, OB airflow 75 m³/h; Envelope airflow 25 m³/h 	
Temperature	T _{out} =20°C	
Humidity	RH _{out} =35% RH	
Airflow direction	From A side	
Air velocity	<2m/sec in the detector	

Requirement	Thermal Shield			
Thermal	Limit heat exchange between the ITS volume and TPC: provide and convection heat transfer	e high thermal resistance to radiation		
Safety	Comply with Fire safety Instruction/Radiation tolerant			
Accesibility	TPC inner bore			

10

Detector and off-Detector Electronics: Specifications

Specification	Detector	Off-Detector Electronics	ALICE
Power dissipation	 IB : On-detector 119.55 W*, Bus OW, Power cable 34W OB-ML : On-detector 1168.99 W*, Bus 26W, Power cable 28W OB-OL : On-detector 3468.96 W*, Bus 135W, Power cable 46W 	• 10 kW**	
Pressure drop stave/board	IB (3I/h)= 0.22 bar OB-ML (5 I/h)= 0.08 bar OB-OL (6.3 I/h)= 0.20 bar	(11l/h) = 0.3 bar	
Chip/Board Operative T range	20°C-30°C	20°C-40°C	
Remove 14.8kW Water Temp range: 18 to 23°C n.48 loops n.4 controlled manifold: • Detector IL, • Detector ML, • Detector OL • Off -Detector Electronics	 * CHIP Power dissipation (based on Alpide 3: • IB =41 mW/cm² • OB= 28 mW/cm² and 50% margin 	** based on nominal 7.5KW+margin	

Alice: Water Cooling, Stavelet Study

Figure 4. Normalized temperature profiles along the samples (at the central stave line). The vertical axis shows the difference between the temperature of the current point of the sample and the measured temperature of the inlet water. The heating power density was 0.5 W/cm^2 .

Figure 5. Temperature profile of the sample 4 (a) and sample 5 (b) at: 0.1, 0.3, 0.4 and 0.5 W/cm^2 power densities. Red dots — thermocouples located in the middle of the heater, green dots — thermocouples located on the edge of the heater close to the inlet channel (temperature 14° C) side, blue dots — thermocouples arranged along the edge of the heater close to outlet water channel.

Alice: Water Cooling, Stave

Thermal characterization

Water leakless (<1bar) baseline

Water in 15°C--->Tchip <30°C

Pixel max temperature non-uniformity < 5°C

Pressure drop ΔP below 0.3 bar

q [W cm ⁻²]	G [L h ⁻¹]	ΔT _{CHIP-H20} [K]	ΔΤ _{Η20} [K]	Δp [bar]	ΔT _{HEATERS} [K]	v _{H2O} [m s ⁻¹]
0.15	6.3	6.7	6.9	0.08	4	0.31

Corrado Gargiulo, 28 May 2015

32

Alice: Water Cooling, end of stave

studies: peripheral cooling, no pipes on the stave

Alice:

ATLAS Strips

Figure 9.1: Schematic of the internal structure of the stave core, with the silicon sensors and ASICs added. Glue layers are not shown. Not to scale.

Figure 9.2: A stave core as seen from the top side. Violet colour indicates carbon-fibre honeycomb material and yellow indicates carbon-foam used in the assembly.

Part or Interface	art or Material nterface		Thickness [mm]	Comment	
ASIC	Silicon	191 (250K) - 148 (300K)	0.30		
ABC130 to Hybrid	UV cure glue	0.5	0.08	50% coverage	
HCC130 to Hybrid	UV cure glue or silver epoxy	0.5 or 3.0	0.08	75% coverage	
Hybrid PCB	Cu/polyimide	72/ 0.23 (0.54)* / 72	0.2	*in via region	
Power PCB	Cu/polyimide	see text	0.3		
PCB to sensor	FH5313 Epolite	0.23	0.12	75% coverage	
Sensor	Silicon	191(250K) - 148(300K)	0.3	Ū.	
Sensor to Bus	DC SE4445	2.0	0.1 - 0.2	100% coverage	
Bus tape	Polyimide/ Cu/Al	0.17 / 0.24 / 0.17	0.17	Ũ	
Bus to facing	-	(idealised)	-	co-cured	
CFRP Facing	0-90-0 CFRP	90 / 1/ 180	0.15	K13C2U fibre, 45 g/m ²	
Facing to Foam	Hysol 9396 + graphite powder	1.0	0.1		
Graphite Foam	Allcomp, 2g.cm-3	30	5 mm (core)		
Foam to Pipe	Hysol 9396 + graphite powder	1.0	0.1		
Cooling Pipe	Titanium (grade 2)	16.4	0.14-0.15 (wall)	2 mm inner dia.	
Fluid film	Bi-phase CO ₂	htc 4.5 - 17 [kW/m ² K]			

Table 9.5: Thermal properties used as input to the FEA.

Base block

Occupancy

Figure 9.8: Total ionizing dose (TID) and non-ionizing energy loss (NIEL) distribution in r - z for the machine operation at $\sqrt{s} = 240$ GeV. The white lines indicate the locations of the vertex detector (VTX), the forward tracking disks (FTD) and the silicon inner tracker (SIT).

	H (240)	W (160)	Z (91)
Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
TID [MRad/year]	0.93	2.9	3.4
NIEL [10^{12} 1 MeV n_{eq} /cm ² ·year]	2.1	5.5	6.2

Table 9.4: Summary of hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) with combined contributions from pair production and off-energy beam particles, at the first vertex detector layer (r = 1.6 cm) at different machine operation energies of $\sqrt{s} = 240$, 160 and 91 GeV, respectively.

Cooling Summary

Microchannel Cooling:

preferred option: spread out, low X_0 , nice project

embedded in carbon fibre

possible over a long distance?

Ti-pipe cooling:

from X₀ point of view actually not as prohibitive as one might think lots of UK investment we know how to do it can absorb any kind of heat

Water cooling: highly focussed X₀ water is not a good substance easy to use commercial product/fitting Conclusion:

carefully check X₀ (distribution) for Ti and ITS options

R&D programme for Microchannel cooling