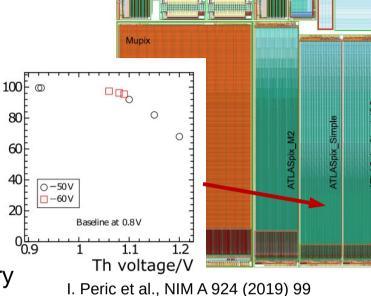


Towards a working demonstrator (a CEPC Tracker demonstrator that is)

Jens Dopke, Daniel Muenstermann

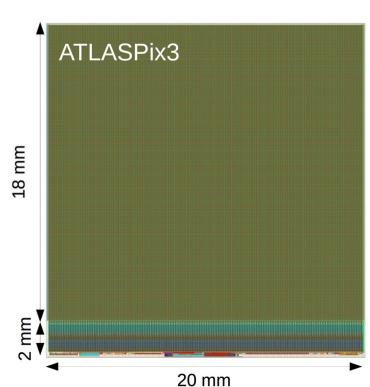
2019: "Summary and Prototyping Proposal"

- We seem to already have in hand everything that it takes to build a competitive, light and cost-efficient CEPC tracker
 - why don't we build a prototype "stavelet" to demonstrate its feasibility?
- We propose to
 - use the full-size monolithic CMOS chip ATLASPix3 as a starting point to gain some experience
 - submit a refined/optimised "CEPC-TPix" ("Tracker-Pixel"!) within the coming months to take into account the CEPC specifics
 - aim to port the HV-CMOS production to a Chinese foundry for the production stage
 - build prototype modules based on ATLASPix3
 - build a stavelet (short stave) based on the Alice/ATLAS truss approach
 - populate the stavelet with modules to arrive at a fully functional prototype(let)
- With our proposal we would like to kick-start R&D and prototyping for the (outer) tracker, not compete with ongoing efforts for the VTX
- Interested parties are very welcome to join in!


demonstrator working

g

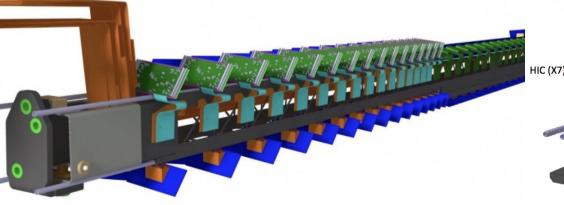
/ards


What do we have in hand for the tracker?

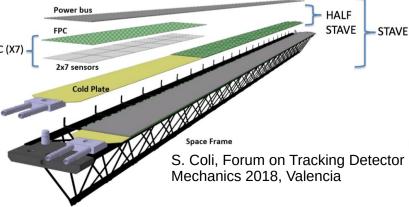
- Monolithic HV-CMOS detectors
 - From ATLAS Pixel CMOS R&D: ATLASPix
 - ensures 25ns timing compliance
 - hit efficiency 99.5%
 - pixel size 50 µm by 150 µm (or smaller)
 - triggered or triggerless readout possible
 - 1.25 GBit/s downlink
 - Reticule size: about 2 cm by 2 cm
 - Full-size chip (ATLASPix3) just submitted, delivery ~July 2019
 - Monolithic CMOS allows to produce large areas fast and cheap
 - No hybridisation wirebonds or C4NP bumps possible
 - Production capacity of typical CMOS foundries: some 10.000 wafers/month
 - 100 m² ~10.000 wafer (with yield and spares)
 - Typical price: o(1000 EUR/wafer) for large quantities, depending on the process and details

%

Efficiency /

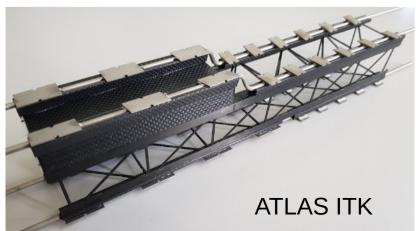


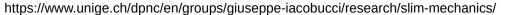
What do we have in hand for the tracker?


Module construction

- Experience from Alice ITS and ATLAS Pixel CMOS R&D
- Alice ITS uses automatised approach for module assembly (Alicia) → scalable, reproducible, little "handcrafting"
- No hybridisation, even wirebonds may be avoidable
- Local supports
 - Experience from Alice ITS OB staves (trusses)
 - Inspired ATLAS Pixel outer barrel structures
 - Includes CO2 bi-phase cooling using Titanium pipes
 - includes "inclined" layout to optimise material
 - evolved manufacturing process allowing for larger production speed

https://www.unige.ch/dpnc/en/groups/giuseppe-iacobucci/research/slim-mechanics/

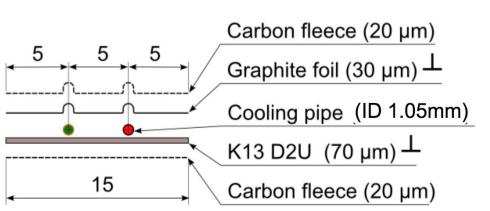


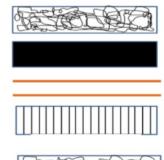


What do we have in hand for the tracker?

Module construction

- Experience from Alice ITS and ATLAS Pixel
- Alice ITS uses automatised approach for m assembly (Alicia) → scalable, reproducible, "handcrafting"
- No hybridisation, even wirebonds may be a
- Local supports
 - Experience from Alice ITS OB staves (trusses)
 - Inspired ATLAS Pixel outer barrel structures
 - Includes CO2 bi-phase cooling using Titanium pipes
 - includes "inclined" layout to optimise material
 - evolved manufacturing process allowing for larger production speed


C. Gargiulo, CLICdp tracker meeting https://indico.cern.ch/event/388177/


ATLICE ITS

What do we have in hand for the tracker?

- Stave loading
 - Experience from Alice ITS: STFC Daresbury Laboratory and CCNU are ALICE ITS loading sides
 - Effort is scalable
- Cooling
 - Experience with bi-phase CO2 cooling in thin-walled Titanium cooling pipes from ATLAS IBL and ITK
 - carbon-foam for heat spreading, carbon foam and faceplates for stiffness
 - Experience with Alice ITS monophase leakless water cooling with polyimide pipes
 - graphite foil and thermal prepreg for heat spreading, truss-based space frame for stiffness
 - Monolithic CMOS allows for a large Delta-T

Lancaster 🌌

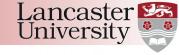
University

C. Gargiulo, CLICdp tracker meeting https://indico.cern.ch/event/388177/

Requirements in detail

- 25ns bunch spacing
 - default for ATLAS, with much higher occupancy and triggered readout
 → can take a monolithic ATLAS CMOS chip as starting point
- o(100m²) area
 - o(10.000) 8" wafer (including yield and spares), should result in o(1000 EUR/wafer)
 - could be a bit cheaper, but order of magnitude is correct
 - 12" wafer might help
 - capacity of typcial foundries o(kWafer/month)
- <50µm pitch

demonstrator


a working

owards

- submitted: 50µm x 150µm, design exists for 25µm x 300µm
- Readout speed: 1.25 Gbit/s demonstrated, triggerless readout available
- Material budget
 - 0.65-1% (?) X/X0 seems not unrealistic compared to what has been achieved
 - Chip runs at room/elevated temperature! Large Delta-T possible
 - \rightarrow no pipes?



Let's get more concrete...

- Up to now: naive (?) proposal from 2019, trying to recycle as much as possible to save cost and effort (as we have no funding)
- Has anything changed?
 - Quite a bit of additional interest in the UK and in China
 - But still no additional funding, i.e. also only limited manpower
 - So we might be able to do a little bit more, but not much
- What is realistic?
 - use ATLASPix3-based modules from the ATLAS efforts
 - not ideal, as we might not want "quad modules", but rather a fully integrated stave a la ALICE – but we get them "for free"
 - use a stave(let) that we can build so probably similar to an existing ATLAS or ALICE stave
 - close enough to X/X0 requirements for CEPC?
 - do we need realistic cooling? (CO2 plant?)
- What do we want to demonstrate?
 - A HV-MAPS-based stave with 25ns time resolution that we actually have in hand?
 - A stave (cooling/readout) concept that fulfils the X/X0 requirement? Is this requirement well justified?

Work sharing

- So if this is the way for us to go how do we share the work?
 - Bristol:
 - Edinburgh:
 - Daresbury:
 - Lancaster:
 - Liverpool:
 - Sheffield:
 - QMUL:
 - RAL:
 - Warwick: