Trigger and reconstruction

Stewart Martin-Haugh (RAL)

Efficient Computing in High Energy Physics 18 February 2020

Science and Technology Facilities Council

Reconstruction

- Scope for novel reconstruction algorithms?
- ► Combining ML with traditional reconstruction is interesting
- ▶ What standalone reconstruction kits can we use?

GPUs

- ► Event reconstruction is embarrasingly parallel
 - ► Two CPUs = 2x throughput
 - ► CPU + GPU = ?x throughput
- For HLT farms or grid site procurement, want $\approx 10x$ speedup
 - Can we establish a cost metric/model
- For some existing resources (USHPC), $\approx 1.5 x$ speedup may be acceptable (better than not using it)
- Gain experience even if we're not using it optimally

Coarsening reconstruction

- ► Store less data (cf TURBOTLADS¹)
- Lossy compression of raw data (e.g. with autoencoders)
- Numerical precision
 - Double, FP32, FP16,FP8,FP4
 - ► Fixed point?

¹Turbo stream, Trigger level analysis, Data scouting

What can we do in 6 months?

- ► Run ML directly on raw data for anomaly detection
- A simple algorithm implemented in CUDA, SYCL, Kokkos etc as a testbed
- ► Establish who in the UK is working on non-x86 architectures
- Make contact with other communities working on fast pattern recognition/decision making