

HEP Software Foundation

International efforts on efficient computing -HEP Software Foundation

Graeme A Stewart, CERN EP-SFT

Efficient Computing for High Energy Physics, Edinburgh 2020-02-17

Future HEP Facilities and Challenges

- HL-LHC brings a huge challenge to software and computing
 - Both rate and complexity rise
- Post LHC future now also under intense discussion (CLIC, ILC, FCC, CEPC)

HEP Software and Computing

- High Energy Physics has a vast investment in software
 - Estimated to be around 50M lines of C++
 - Which would cost more than 500M\$ to develop commercially
- It is a critical part of our physics production pipeline, from triggering all the way to analysis and final plots as well as simulation
- LHC experiments use about 1M CPU cores every hour of every day, we have around 1000PB of data with 100PB of data transfers per year (10-100Gb links)
 - We are in the exabyte era already
- This is a *huge* and *ongoing* cost in hardware and human effort
- With significant challenges ahead of us to support our ongoing physics programme

Technology Evolution

- Moore's Law continues to deliver increases in transistor density
 - But, doubling time is lengthening
- Clock speed scaling failed around 2006
 - No longer possible to ramp the clock speed as process size shrinks
 - Leak currents become important source of power consumption
- So we are basically stuck at ~3GHz clocks from the underlying Wm⁻² limit
 - This is the Power Wall
 - Limits the capabilities of serial processing
- Memory access times are now ~100s of clock cycles

Decreasing Returns over Time

- Conclusion: diversity of new architectures will only grow
- Best known
 example is of GPUs

[link]

GPUs dedicate far more transistors to arithmetic

HEP Software Foundation (HSF)

- The LHC experiments, Belle II and DUNE face the same challenges
 - HEP software must evolve to meet these challenges
 - Need to exploit all the expertise available, inside and outside our community, for parallelisation
 - New approaches needed to overcome limitations in today's code
- Cannot afford any more duplicated efforts
 - Each experiment has its own solution for almost everything (framework, reconstruction algorithms, ...)
 - New experiments should not be starting from scratch, but building on best-of-breed
- The goal of the <u>HSF</u> is to facilitate coordination and common efforts in software and computing across HEP in general
 - Our philosophy is bottom up, a.k.a. do-ocracy

Community White Paper

- We wanted to describe a global vision for software and **computing** for the HL-LHC era and HEP in the 2020s
- Formal <u>charge from the WLCG</u> in July 2016
 - Anticipate a "software upgrade" in preparation for HL-LHC 0
 - Identify and prioritize the software research and development investments 0
 - to achieve improvements in software efficiency, scalability and performance and to make use of the advances in CPU, i. storage and network technologies
 - to enable new approaches to computing and software that could radically extend the physics reach of the detectors ii.
 - to ensure the long term sustainability of the software through the lifetime of the HL-LHC iii.
- Long process of 1 year, with many working groups and 2 major workshops
- Community engagement: 310 authors from 124 institutes, 14 chapters
- Published in Computing and Software for Big Science, https://doi.org/10.1007/s41781-018-0018-8 (and on arXiv)

Contents 1 In 2 8

References

1	Introduction				
2	2 Software and Computing Challenges				
3	Programme of Work				
	3.1 Physics Generators	1			
	3.2 Detector Simulation	1			
	3.3 Software Trigger and Event Reconstruction	2			
	3.4 Data Analysis and Interpretation	2			
	3.5 Machine Learning	3			
	3.6 Data Organisation, Management and Access	3			
	3.7 Facilities and Distributed Computing	4			
	3.8 Data-Flow Processing Framework	4			
	3.9 Conditions Data	- 4			
	3.10 Visualisation	5			
	3.11 Software Development, Deployment, Validation and Verification	5			
	3.12 Data and Software Preservation	5			
	3.13 Security	6			
4	Training and Careers	6			
	4.1 Training Challenges	6			
	4.2 Possible Directions for Training	6			
	4.3 Career Support and Recognition	6			
5	Conclusions	6			
A	ppendix A List of Workshops	7			
A	ppendix B Glossary	7			

HSF Working Groups

- The Roadmap established what challenges the community faced
 - But it did not spell out *how* to face them in detail
- HSF had <u>working groups</u> from its earliest days
 - These were open groups of people in the community, motivated enough to organise around a common topic, usually at their own initiative
- This model was a good one for moving forwards on the key topics
 - We setup new working groups for <u>Detector Simulation</u>, <u>Reconstruction and Software Triggers</u>, and <u>Data</u> <u>Analysis</u>
 - HSF Coordination group setup a search committee, whole community could nominate convenors
- The HSF's role here is one of an information conduit and meeting point
 - Report on interesting and common work being done
 - Forum for technical comments and discussion
 - Encourage cooperation across experiments and regions
- This model was a real success and was expanded this year to all working groups

Laying Good Foundations - Some Practical Matters

- Copyright and Licensing
 - Long neglected inside collaborations
 - Essential to be able to
 - Open source our software
 - Combine with other open source projects
- Copyright
 - Keep as low a number as practicable
 - E.g. © CERN for the benefit of collaboration X
- License
 - Favour liberal licenses for industry collaboration:- LGPL, Apache, MIT
 - Avoid GPL for libraries you want other people to use

- Software Tools
 - Active group promoting best practice for correctness and performance
- Packaging
 - We don't build our experiment software in isolation
 - Need a software stack, incorporating many components from the open source world and HEP community
 - Preference for tools that are not home grown and have a wider support base
 - Spack actively being prototyped (link to Key4hep project in EP R&D)

[<u>HSF-TN-2016-01</u>; <u>HSF-TN-2016-03</u>]

Event Generators

- Event generators are the start of the simulation chain
 - At the LHC Run1 only leading order generators were used
 - Negligible CPU consumption compared with detector simulation
- However, with LHC upgrades coming higher order generators become much more important
 - These are inherently much more costly to run
 - Problems of negative weights can increase hugely the samples needed for weighted event samples
- In addition, the theory community, who develop these codes usually work in small teams
 - Recognition for technical improvements is limited/missing
- <u>HSF/LPCC Workshop</u> in 2018 spawned a new working group

Many electroweak measurement errors dominated by theory (red). <u>B. Hinemann</u>

Event Generators - Technical Improvements and Porting

- Working group tackling technical challenges
 - Setting a baseline for further comparisons
 - Understanding how to run generators for best efficiency
 - Support for technical improvements (e.g. thread safety)
 - Porting to other architectures
 - Could be very suitable code to do this with (smaller, self contained code bases, numerically intensive)
- New Architectures
 - Original port of some elements of <u>MadGraph to GPUs</u> by Japanese Group at KEK
 - Work <u>reinvigorated at ANL</u> over summer 2019
 - HSF WG now actively discussing with MadGraph authors how to continue this
 - Interest also in Sherpa (heavily used by ATLAS)

Detector Simulation

- A major consumer of LHC grid resources today
 - Experiments with higher data rates will need to more simulat
- Faster simulation, with no or minimal loss of accuracy, is the goal
 - Range of techniques have been used for a long time (frozen showers, parametric response)
 - Key point is deciding when it's good enough for physics
- Machine learning lends itself to problems like this
 - Calorimeter simulations usually targeted
 - Variational Auto Encoders (VAEs) and Generative Adversarial Networks (GANs)
 - This is probably not as easy as we thought traditional parametric approaches are hard to beat
 - \circ $\hfill R\&D$ on lifecycle integration into Geant4 is starting

Use of Generative Adversarial Networks to simulate calorimeter showers, trained on G4 events (S. Vallacorsa)

Energy = 65 GeV

ATLAS VAE and GAN cf. Geant4 simulation [ATL-SOFT-PUB-2018-001.]

Detector Simulation

Processor	GeantV	GeantV-vec	Geant4	G4/GV	G4/GV-vec
SSE4-2.3-15	4457	4333	6627	1.49	1.53
AVX-2.0-15	2621	2331	4938	1.88	2.12
AVX2-2.4-35	1628	1530	2182	1.34	1.43
AVX2-2.5-28	1186	1275	1875	1.58	1.47

• Technical improvement programme helps (and helps *everyone*)

GeantV and Geant4 execution speeds for EM physics with and without vectorisation (<u>Andrei Gheata</u>)

- GeantV R&D modernises code and introduces vectorisation
 - Speed-ups observed (VecCore and VecGeom *backported* to Geant4)
 - Vectorisation introduces small gains, due to costs of "basketisation"
 - Code modernisation seems to help a lot
- Geant4 have an R&D working group that will take studies forward as well as the HSF WG
- Increasingly GPUs are seen as the real target (some architecture convergence)
 - US Exascale Computing Project has funded some work, ongoing at FNAL and Oak Ridge
 - This is a hard problem, but also a relatively green-field area
 - Set realistic expectations
 - Establish a programme of R&D activities (Lund workshop)

Reconstruction and

Software Triggers

- Hardware triggers no longer sufficient for modern experiments
 - More and more initial reconstruction needs to happen in software
- Close to the machine, need to deal with tremendous rates and get sufficient discrimination
 - Pressure to break with legacy code is high
 - Lots of developments rewriting code for GPUs
 - Physics can get better!
 - Lessons learned: keep data model simple, bulk data, be asynchonous, minimise data transfers
- And design your detector taking software and computing into account
 - <u>ATLAS ITk reconstruction</u> is faster at 200 pile-up than current reconstruction at 60 (aka Don't Panic!)

Reconstruction and Software Triggers

- Real Time Analysis (HEP Version)
 - Design a system that can produce analysis useful outputs as part of the trigger decision
 - If this captures the most useful information from the event, can dispense with raw information
 - This is a way to fit more physics into the budget
- LHCb Turbo Stream has been introduced in Run2 and will be dominant in Run3
- Whole ALICE data reduction scheme is based around keeping 'useful' parts of events (no more binary trigger)
 O2 > Online/Offline Data Reduction Farm
- ATLAS and CMS have schemes under development for special handling of samples for which full raw data is unaffordable (aka. data scouting)

Persistence method	Average event size (kB)
Turbo	7
Selective persistence	16
Complete persistence	48
Raw event	69

LHCb Run2 Turbo took 25% of events for only 10% of bandwidth

LHCb charm physics analysis using Turbo Stream (arXiv:1510.01707)

- Scaling for analysis level data also a huge challenge for all LHC experiments
- Efficient use of analysis data can come with combining many analyses as carriages in a train like model (pioneered by PHENIX then ALICE)
 - Also goes well with techniques like tape carousels (ATLAS scheme for rotating primary AOD data from tape systems into a disk buffer)
 - Interest in analysis clusters, specialised for analysis operations over the generic grid resources (<u>WLCG/HSF pre-CHEP workshop 2-3 November</u>)
- Reducing volume of data needed helps hugely
 - CMS ~1kB nanoAOD makes a vast difference to analysis efficiency and "papers per petabyte"
- Declarative models, building on ROOT's RDataFrame
 - Say what, not how and let the backend optimise
 - E.g. split and merge, GPU execution

<u>PyHEP</u> ("Python in HEP") and New Approaches

- Python is ever more popular in Particle Physics
- Impressive developments of a Python scientific ecosystem for HEP in the last 2 years
- With strong links to the general scientific ecosystem
 - Interest in *data science* tools and *machine learning* is significant for this growing community
- Inspiring new approaches for data analysis
 - Exploiting modern approaches declarative programming, heterogeneous resources, etc.
 - \circ \quad This is an ecosystem into which HEP can, and does, contribute
 - Knowledge transfer goes both ways
 - Various projects under development, inter-communicating
- Yearly PyHEP workshops have been a success
 - This year <u>co-located with SciPy 2020</u>

Training and Careers

- Many new skills are needed for today's software developers and users
- Base has relatively uniform demands
 - Any common components help us
- LHCb StarterKit initiative taken up by several experiments, sharing training material
 - We ran a <u>Software Carpentries tutorial</u> at CERN last year, another coming <u>this March</u> (co-organised with IRIS-HEP)
- New areas of challenge
 - Concurrency, accelerators, data science (upcoming: <u>oneAPI training</u> from openlab, <u>Alpaka hackathon</u> from openlab/HSF, possible CUDA bootcamp via openlab)
 - Need to foster new C++ expertise (unlikely to be replaced soon as our core language, but needs to be modernised)
- Careers area for HEP software experts is an area of great concern
 - \circ ~ Need a functioning career path that retains skills and rewards passing them on...

Directions for International Efforts

- Particle physics is in inherently international effort, with an excellent tradition of cooperation in many different domains
 - \circ Detector R&D, Experiments, WLCG, Common Software
- But we have also had incoherent approaches and duplication
- <u>HEP Software Foundation</u> tries to foster much more the shared vision
 - This encourages diverse R&D!
 - Annual workshop with WLCG is a community focal point <u>come to</u> <u>Lund</u>

There is clearly success in attracting funding to this area: IRIS-UK, IRIS-HEP, ErUM-DATA IDT, CERN EP R&D, AIDAinnova; links to other sciences and software engineers via <u>SIDIS</u>. Though overall we believe it is **not yet enough**!

Programme on Technologies for Future Experiments

Backup

Meeting the HL-LHC Challenge...

- Already since the Roadmap was written experiments have made great progress in meeting the HL-LHC challenge
 - Bad software, is extremely expensive
 - Good and clever software allows much more physics to fit in the budget

Getting Involved with HSF...

- Join the HSF Forum, <u>hsf-forum@gmail.com</u>
 - Few messages a week with updates, jobs, items of interest
 - Owned by the community please just post items of relevance
- Join a working group,

https://hepsoftwarefoundation.org/what_are_WGs.html

- Follow the group's meetings and discussions
- Suggest a meeting topic
- Indico Main Page
- Annual meetings
 - Established tradition of a joint meeting with WLCG each Year
 - This year we will be in Lund, 11-15 May
- Propose a new activity area
 - The HSF is there to help gather interest

- Data Analysis
- Detector Simulation
- Frameworks
- Physics Generators
- PyHEP Python in HEP
- Reconstruction and Software Triggers
- Software Developer Tools and Packaging
- Training