
Frameworks

Adam Barton
Lancaster University



Acknowledgments

CMS Heterogeneous computing: Felice Pantaleo, Dr Andrea Bocci

ATLAS GPU Tests: Attila Krasznahorkay

LHCb Framework: Marco Clemencic

ALICE: Giulio Eulisse

Graeme A Stewart



3

Introduction

● With the advent of the clock speed crisis, hardware design has 
needed to exploit alternative designs to increase performance:
– Multi-cores

– Wide vector operations

– Pre-fetching caches

● These technologies usually require specific coding styles 
or APIs to properly exploit. This has led to an explosion 
in languages and frameworks and extra work porting 
code between them.

If no muons found

Alternative processors
● GPUs
● FPGAs
● TPUs



4

What is the clock speed crisis?

● From 1970 to 2005 processor/core speed 
increased exponentially

● By 2000, programmers were getting 
disillusioned and lazy – why work to improve 
your code when you can wait 2 years and have 
it run twice as fast after you upgrade?

● During this period you got an emphasis on 
abstraction and ‘safe’ programming, languages 
like C# and Java were thought to be the future.

● By 2005 the clock speed maxed out at 3 to 4 
GHz. To continue Moore’s law, chip makers 
starting producing multiple core chips. This 
stalled the performance of any serial codes (all 
HEP codes in those days).



5

● This involves performing the same operation on multiple items on the processor in one 
step.

● But your code and memory must be arrange in a contiguous manner in order to exploit this.

● SIMD is also hard to exploit when you have a stochastic element or have a lot of logical 
branches in your logic. Which unfortunately applies to simulation and tracking quite heavily.

● ATLAS will not be exploiting this extensively until future phases, LHCb will be exploiting it 
much sooner

Vectorization (or SIMD)



6

ATLAS Challenges

● Memory costs prohibit ATLAS 
running software in multiple 
processes.

– Already in advanced development but 
incomplete - rewrite Athena to run 
multi-threaded.

● Run 4: 5 x Pileup, ~7 x HLT rate, 
more readout channels - increasing 
CPU requirements.

● Disk storage requirements exceed 
flat budget estimate.



7

ATLAS: AthenaMT

● AthenaMT will use components of the multi-threaded framework Gaudi.

● AthenaMT will use the Intel Thread Building Blocks library to execute 
algorithms on available CPU threads.

● Algorithms using data from one event/collision can be parallelized and multi 
events can also run in parallel . (Intra-event and Inter-event parallelism). 

Time

Thread
1

2

3

4

Event 1
Event 2
Event 3
Event 4



8

ATLAS: Portability Solutions 

● More interested in “Portable” than “Performant”, 
only want to write code once.

● Want to use high level C++ if possible

● Looked at
– Kokkos/Raja – currently only Nvidia, most performant

– SYCL – can’t chain kernels, single source C++ can target CPU

– OpenMP, ugly pramas, broadest support on HPCs

– HIP, no intel support, good for AMD



9

ATLAS: Accelerators

● ATLAS doesn’t use any accelerators in central production yet

● An evaluation was done in 2013-2015

– Evaluated CUDA, concluded it was too much work to rewrite a 
significant amount of code give the relative low performance boost.

● Datacenters are providing GPUs as standard now

● ATLAS’ computing model will be moving towards a more GPU 
friendly system anyway.



10

ATLAS GPU Tests

● ATLAS does a series of test on GPUs using OpenCL, CUDA (most 
mature) and SYCL.

● The tests were not using any “real” ATLAS reconstruction code.

● CPU-only algorithms are arbitrary “crunching” code.

● GPU emulated:
– The test jobs measure during initialisation how many FLOPS the CPU can do in a single 

thread in a unit of time.

– With this information FLOPS values are associated to the time values stored in the 
Gaudi data files.

– The GPU tasks then execute this number of FLOPS on small arrays, with some 
configurable multipliers applied.



11

ATLAS: Reconstruction Emulation Results

● Reference job: using only CPU code crunching 
and validated with portable code running on 
CPU.

● Configured 3 CPU intensive reconstruction to 
run on NVIDIA GPU with CUDA.

● Comments:

– Algorithms off of the “critical path” can 
handle being executed less efficiently on an 
accelerator, but not by much.

– Clearly not working as efficiently as it 
should.

● Early tests on Intel oneAPI are not working 
well.

Attila Krasznahorkay



12

CMS

● CMS has similar challenges to ATLAS and similar solutions 
in terms of multi-threading.

● CMS already had multithreading during run2

● Immediate plans includes GPU heterogeneous offloading.

● Run 3 (2021 – 2024)

– online reconstruction : offload 20% to 30% of the computing 
needs to NVIDIA GPUs

– Offline reconstruction: leverage opportunistic resources, Intel, 
NVIDIA, AMD GPUs

● Run 4+ (2027-…)

– 30x more CPU performance online and offline

– fully heterogeneous online and offline reconstruction

● Needs way to write portable code for this to be viable.



13

CMS: Heterogeneous Run3 HLT Farm

● CMS wants a heterogeneous HLT farm well before 
Run-4

● 30% of the HLT reconstruction algorithms seem like 
a good candidate for porting

● What does CMS aim to gain in the short term?
– Better physics performance

– Reconstruction able to run on Supercomputers

– Expertise in the “inevitable” Heterogeneous computing



14

CMS Heterogeneous performance



15

ARM with powerful GPU

● The CPU market may start favouring ARM CPUs

● If your work can be offset to GPUs you can forgo expensive x86 
processors all together

2 × Volta V100 on Cavium 
ThunderX2 CN9975 SoC

1 × Volta V100 on Intel 
Xeon Silver 4114 CPU

Cavium ThunderX2 
CN9975 SoC

• 2 × Volta V100 
32GB

• 2 x 5120 Volta cores
• 4 jobs per GPU
• 1737 ± 6 ev/s / GPU

Intel Xeon Silver 
4114

• 1 × Volta V100 
32GB

• 1 x 5120 Volta cores
• 4 jobs per GPU
• 1800 ± 5 ev/s

CMS Preliminary 2018 data 13 TeV - Patatrack



16

CMS: Intel OneAPI

● CMS’ raw pixel data decoding is ported to 
different frameworks
– Intel oneAPI

● “host” platform emulation

● OpenCL Intel Core or Xeon CPUs

● Open Intel gen9 GPUs

● Work in progress: Intel Arria 10 FPGAs

– OneAPI beta 3: Stable distribution and documentation, 
compilers, CUDA to oneAPI tools.

● CMS’ software is already in a very good position 
to exploit oneAPI.

● Extremely parallelisable software that can be 
fully heterogeneous in the medium to long term.

Device OneApi Test
1699 modules

Host emulation 5888.52 us

CPU 5728.53 us

GPU (3.5x faster) 1623.66 us



17

LHCb

● LHCb are aiming to upgrade all their code for run 3:
– Use Gaudi

– All algorithms will be used as pure functions (constrains users)

– All algorithms are re-entrant

● LHCb have small events with extremely tight time budget
– Overhead of Gaudi Avalanche Scheduler is not acceptable

– We now have HLTControlFlowMgr

● There is a prototype GPU port for HLT1, but not yet 
decided if it will go into production



18

HLTControlFlowMgr: a Low Overhead Scheduler

● One event per thread serialized execution of 
Algorithms on each event.

● Order of execution:
– Based on data and control flow dependencies

– No need for intra-event synchronization

– Early exit from chains implemented as a jump

● Optimization work already in progress



19

Alice - Fair Framework Collaboration

● Goal: develop and support common 
software solutions for the Run3 of 
the ALICE LHC experiment and 
upcoming experiments.

● Based on the experiences of ALICE 
HLT in Run1 / Run2 and the of the 
FairRoot framework.

● Data processing happens in separate 
processes, called devices, 
exchanging data via a shared 
memory backed Message Passing 
paradigm.



20

Alice framework in one slide



21

Introducing Intel oneAPI

● A project to deliver a unified 
software development environment 
across CPU and accelerator 
architectures.

● Unified and simplified language and 
libraries for expressing parallelism

● Delivering native high-level language 
performance

● Based on industry standards and 
open specifications



22

Introducing Intel oneAPI

● Open standard specification to 
promote community and industry 
vendors support and includes:
– Direct programming flow with an open, 

unified language: DPC++ based on C++ with 
SYCL extensions

– API-based programming flow with a set of 
powerful libraries designed for each 
hardware to accelerate key domain-specific 
functions, most of them open sourced

– Specification of Low-level interface to 
provide a hardware abstraction layer to 
vendors



23

Intel Tools

● Top Features/Benefits
– Data Parallel C++ compiler, library, and 

analysis tools

– tool helps migrate existing code written in 
CUDA

– Python distribution includes accelerated 
scikit-learn, NumPy, SciPy libraries

– Optimised math libraries

– Intel Vtune profiling tools

– Intel Advisor – recommends action 
optimising code

– Intel debugger GUI

– DevCloud – sandbox for developers



24

Conclusions

● The after the core boom the future appears to be 
heterogeneous computing

● CMS have started working on applying this

● ATLAS has been investigating various systems

● ALICE has an interesting alternative design

● Intel OneAPI is, on paper, a promising framework for 
handling heterogeneous hardware with “minimal” 
code rewrites 



25

Back Up



26

Example code



27

Example Code



28

Example Code


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

