Lancaster E=3
University

Frameworks

Adam Barton
Lancaster University

Lancaster E=3

Acknowledgments University

CMS Heterogeneous computing: Felice Pantaleo, Dr Andrea Bocci
ATLAS GPU Tests: Attila Krasznahorkay
LHCb Framework: Marco Clemencic

ALICE: Giulio Eulisse

Graeme A Stewart

Lancaster EE3
University ¢ *

Introduction

e With the advent of the clock speed crisis, hardware design has
needed to exploit alternative designs to increase performance:

— Multi-cores Alternative processors
. . * GPUs
— Wide vector operations
. * FPGAs
- Pre-fetching caches « TPUs

e These technologies usually require specific coding styles
or APIs to properly exploit. This has led to an explosion
In languages and frameworks and extra work porting
code between them.

Lancaster EE3
University #

What is the clock speed crisis?

42 Years of Microprocessor Trend Data

e From 1970 to 2005 processor/core speed : ! ‘ ! . -
increased exponentially r T poumd” | Tramsistors
Y I R S I At
e By 2000, programmers were getting L S ﬂ;:‘*iif RO L S‘;}?J,?;IQ;‘;@“S
disillusioned and lazy - why work to improve oty ‘f‘fé;"'"w] (SPECINT X 107
your code when you can wait 2 years and have | N ;.-'.-'ﬂ"-'*""-‘ we | Freaueney (e
. . : s e gl 3,00 Typical Power
it run twice as fast after you upgrade? 102 | ot BT v SRR R (Was)
o . Ol SR N DA At ANRAE SRR T
e During this period you got an emphasis on olie TT o el el eres
abstraction and ‘safe’ programming, languages ' [%° " TTTTTTTTT |
9

80 1990 2000 2010 2020
Year

like C# and Java were thought to be the future. ™7 ‘

e By 2005 the clock speed maxed out at 3to 4
GHz. To continue Moore’s law, chip makers
starting producing multiple core chips. This
stalled the performance of any serial codes (all
HEP codes in those days).

Lancaster EE:‘-;

Vectorization (or SIMD) University ©

e This involves performing the same operation on multiple items on the processor in one
step.

e But your code and memory must be arrange in a contiguous manner in order to exploit this.

« SIMD is also hard to exploit when you have a stochastic element or have a lot of logical
branches in your logic. Which unfortunately applies to simulation and tracking quite heavily.

« ATLAS will not be exploiting this extensively until future phases, LHCb will be exploiting it
much sooner

SIMD Mode Scalar Mode

AS

AS5+BS +

LN L B N L L B B L B B

T T T I T T T | T T T I T T
 ATLAS Preliminary
100 | CPU resource needs

80 2018 estimates:

<
4
|III|I\\|\

AT LAS C h a I I e n eS - v MC fast calo sim + standard reco)
| * MC fast calo sim + fast reco Fooove
60|+ Generators speed up x2 v
- L] o _|
- — Flat budget model ;* 0 s
40 o (+20%/year) 'y e ']

Annual CPU Consumption [MHSO06]

e« Memory costs prohibit ATLAS
running software in multiple 20
processes.

Run 2

‘ 2016 2020 2022 2024 2026 2026 2030 2032
- Already in advanced development but Vear
i n CO m p I ete - rewrite Ath e na to ru n CHF/HS06 Price/performance evolution of installed CPU servers (CERN)

multi-threaded. N Brme

‘ L»‘.yw,“ , JF_'P’“ W
e« Run 4: 5 x Pileup, ~7 x HLT rate, v LI L[] S
more readout channels - increasing S SESESESE
CPU requirements. L e b [
e S T
 Disk storage requirements exceed Jooszotz L || 2RO

1.00

L]
ﬂ t b d t tl t 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
at budget estimate.

Lancaster
University ¢ #

ATLAS: AthenaMT

o AthenaMT will use components of the multi-threaded framework Gaudi.

o AthenaMT will use the Intel Thread Building Blocks library to execute
algorithms on available CPU threads.

» Algorithms using data from one event/collision can be parallelized and multi
events can also run in parallel . (Intra-event and Inter-event parallelism).

1 > Time Event 2
2 Event 3

Event 4
3

Lancaster EE3
University ¢ *

ATLAS: Portability Solutions

« More interested in “Portable” than “Performant”,
only want to write code once.

e Want to use high level C++ if possible
e Looked at

— Kokkos/Raja - currently only Nvidia, most performant

— SYCL - can’t chain kernels, single source C++ can target CPU
— OpenMP, ugly pramas, broadest support on HPCs

— HIP, no intel support, good for AMD

Lancaster EE3
University ¢ *

ATLAS: Accelerators

ATLAS doesn’t use any accelerators in central production yet
An evaluation was done in 2013-2015

— Evaluated CUDA, concluded it was too much work to rewrite a
significant amount of code give the relative low performance boost.

Datacenters are providing GPUs as standard now

ATLAS’ computing model will be moving towards a more GPU

friendly system anyway.

Lancaster EE3
University ¢ *

ATLAS GPU Tests

o ATLAS does a series of test on GPUs using OpenCL, CUDA (most
mature) and SYCL.

e The tests were not using any “real” ATLAS reconstruction code.

e CPU-only algorithms are arbitrary “crunching” code.
e GPU emulated:

— The test jobs measure during initialisation how many FLOPS the CPU can do in a single
thread in a unit of time.

— With this information FLOPS values are associated to the time values stored in the
Gaudi data files.

— The GPU tasks then execute this number of FLOPS on small arrays, with some
10 configurable multipliers applied.

11

ATLAS: Reconstruction Emulation Results

o Reference job: using only CPU code crunching
and validated with portable code running on
CPU.

e Configured 3 CPU intensive reconstruction to
run on NVIDIA GPU with CUDA.

e Comments:

— Algorithms off of the “critical path” can
handle being executed less efficiently on an
accelerator, but not by much.

— Clearly not working as efficiently as it
should.

 Early tests on Intel oneAPI are not working
well.

Setup

50 events, 8 threads, CPU-only
algorithms

50 events, 8 threads, 3

“critical-path” CPU/GPU algorithms,

run only on CPUs

50 events, 8 threads, 3
“critical-path” algorithms offloaded
with ideal FPOPS

50 events, 8 threads, 3 “critical
path” algorithms offloaded with 10x
FPOPS

50 event, 8 threads, 4 “heavy
non-critical-path” algorithms
offloaded with ideal FPOPS

50 events, 8 threads, 4 “*heavy
non-critical-path” algorithms
offloaded with 3x FPOPS

Lancaster EE3
University #

Attila Krasznahorkay

Time [s]

68.3 + 0.47

68.1 + 0.66

54.5 + 0.47

151.2+27.2

49.5 + 1.51

70.3+10.0

Lancaster EE3
University #

CMS

e CMS has similar challenges to ATLAS and similar solutions s — CPU seconds by Type
o o o I Analysis
in terms of multi-threading. 00 | mmm HLLHC MC
LHC MC
e CMS already had multithreading during run2 e it
« Immediate plans includes GPU heterogeneous offloading.]
« Run 3 (2021 - 2024) " o0
— online reconstruction : offload 20% to 30% of the computing 400 -
needs to NVIDIA GPUs 200 -
- Offline reconstruction: leverage opportunistic resources, Intel, ol == T = = — — = ! pa—
NVIDIA, AMD GPUs T &8 &8 8§ R 8’8 8 88 & § 8§

e Run 4+ (2027-...)

- 30x more CPU performance online and offline

— fully heterogeneous online and offline reconstruction

» Needs way to write portable code for this to be viable.

Lancaster EE3
University #

CMS: Heterogeneous Run3 HLT Farm

e« CMS wants a heterogeneous HLT farm well before
Run-4

e 30% of the HLT reconstruction algorithms seem like
a good candidate for porting

« What does CMS aim to gain in the short term?

— Better physics performance

— Reconstruction able to run on Supercomputers
13— Expertise in the “inevitable” Heterogeneous computing

14

CMS Heterogeneous performance

throughput (ev/s)

1000

900

800

700

600

500

400

300

200

100

legacy (on CPU)

quadruplets (on GPU)

triplets (on GPU)

quadruplets (on CPU)

triplets (on CPU)

Lancaster
University ©

pixel tracks and vertices global reco

CPU
* dual socket Xeon Gold 6130
¢ 2 x 16 cores (2 x 32 threads)
* throughput measured on a full node
* 4 jobs with 16 threads

GPU
* single NVIDIA Tesla T4
* 2560 CUDA cores
* single job with 10-16 concurrent events

transfer from GPU to CPU
* ondemand
* small impact on event throughput

conversion to legacy data formats
* on demand, to be minimised
* small impact on event throughput
* high cost in CPU usage

15

ARM with powerful GPU

e The CPU market may start favouring ARM CPUs

Lancaster EE3
University ©- 2

e If your work can be offset to GPUs you can forgo expensive x86
processors all together

4000 A

35004

average throughput (ev/s)

1000 A

500

2500 A

2000 A

1500 A

CMS Preliminary 2018 data 13 TeV - Patatrack

3000 .

®

s oo o o o o o
o o o o ¢

L 2 x Volta V100 on Cavium
o ThunderX2 CN9975 SoC

1 X Volta V100 on Intel
Xeon Silver 4114 CPU

0

T 1 T 1 1 T 1 T
10 20 30 40 50 60 70 80
EDM streams

* 1 x 5120 Volta cores
* 4 jobs per GPU
*+ 1800 = 5 ev/s

Cavium ThunderX?2
CN9975 SoC

* 2 x Volta V100

32GB

*+ 2x 5120 Volta cores
* 4 jobs per GPU
« 1737 = 6 ev/s | GPU

Intel Xeon Silver
4114

+ 1 x Volta V100

32GB

CMS: Intel OneAPI

o CMS’ raw pixel data decoding is ported to
different frameworks

— Intel oneAPI
e “host” platform emulation
e OpenCL Intel Core or Xeon CPUs
e Open Intel gen9 GPUs
e Work in progress: Intel Arria 10 FPGAs
— OneAPI beta 3: Stable distribution and documentation,
compilers, CUDA to oneAPI tools.

« CMS’ software is already in a very good position
to exploit oneAPI.

o Extremely parallelisable software that can be
fully heterogeneous in the medium to long term.

16

Lancaster EE3
University ¢ *

Device OneApi Test
1699 modules

Host emulation 5888.52 us
CPU 5728.53 us
GPU (3.5x faster) 1623.66 us

Lancaster EE3
University ¢ *

LHCb

e LHCb are aiming to upgrade all their code for run 3:
— Use Gaudi
— All algorithms will be used as pure functions (constrains users)
— All algorithms are re-entrant

e LHCb have small events with extremely tight time budget

— Overhead of Gaudi Avalanche Scheduler is not acceptable
— We now have HLTControlFlowMgr

e There is a prototype GPU port for HLT1, but not yet
decided if it will go into production

17

Lancaster EE3
University ¢ *

HLTControlFlowMgr: a Low Overhead Scheduler

e One event per thread serialized execution of
Algorithms on each event.

e Order of execution:

— Based on data and control flow dependencies
— No need for intra-event synchronization
— Early exit from chains implemented as a jump

o Optimization work already in progress ‘

18

Lancaster EE3
University #

Alice - Fair Framework Collaboration

e Goal: develop and support common
software solutions for the Run3 of

memory location

the ALICE LHC experiment and
upcoming experiments. /

memory location
of output data

“message” =
memory location
of output data
“message” =
memory location
of input data

devicel

e Based on the experiences of ALICE
HLT in Run1 / Run2 and the of the
FairRoot framework.

« Data processing happens in separate
processes, called devices,
exchanging data via a shared
memory backed Message Passing

19 paradigm.

Lancaster e

Alice framework in one slide

Data Processing Layer (DPL)

Data Layer: 02 Data Model

Transport Layer: ALFA / FairMQ!

20

Abstracts away the hiccups of a distributed system, presenting the user a familiar "Data
Flow" system.

> Reactive-like design (push data, don't pull)

» Declarative Domain Specific Language for topology configuration (C++17 based).

» Integration with the rest of the production system, e.g. Monitoring, Logging, Control.

> Laptop mode, including graphical debugging tools.

Message passing aware data model. Support for multiple backends:

» Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for
TPC reconstruction on the GPU.

» ROOT based serialisation. Useful for QA and final results.

» Apache Arrow based. Useful as backend of the analysis ntuples and for integration with other
tools.

» Standalone processes for deployment flexibility.
» Message passing as a parallelism paradigm.
» Shared memory backend for reduced memory usage and improved performance.

Lancaster
University # 2

Introducing Intel oneAPI

Application Workloads Need Diverse Hardware

e A project to deliver a unified il M = i
software development environment REELE IS LSS
across CPU and accelerator
arChiteCtureS. Middleware / Frameworks

e Unified and simplified language and

libraries for expressing parallelism Industry - Intel
. . . . Initiative e Product
 Delivering native high-level language oneAPI
performance

e Based on industry standards and
open specifications

FPGA OTHERACCEL.

22

Lancaster EE3
University # 2

Introducing Intel oneAPI

e Open standard specification to
promote community and industry
vendors support and includes:

— Direct programming flow with an open,
uniﬁed Ianguage: DPC++ based on C++ W|th Direct Programming API-Based Programming

SYCL extensions
— API-based programming flow with a set of R aratiel Cr
powerful libraries designed for each

hardware to accelerate key domain-specific
functions, most of them open sourced

Application Workloads

Middleware / Frameworks

oneAPI Industry Specification

Low-Level Hardware Interface (oneAPI Level Zero)

— Specification of Low-level interface to
provide a hardware abstraction layer to OTHER ACCEL
vendors

Lancaster
University ©-®

Intel Tools

. Intel® oneAP| Base Toolkit
« Top Features/Benefits '

— Data Parallel C++ compiler, library, and

DIRECT PROGRAMMING API-BASED PROGRAMMING | ANALYSIS & DEBUG T0OLS

analysis tools s DPCs-+ Library VTune™ Profiler
— tool helps migrate existing code written in R e Tty Intel® Advisor
CUDA Intel® Distribution : _Intgle oneAPl GDB*
~ Python distribution includes accelerated T PRSI
scikit-learn, NumPy, SciPy libraries e OneAD! bace et

. e . . Toolkit Blocks
— Optimised math libraries

Intel® oneAPI gideu
ops Processing Library
— Intel Vtune profiling tools
Intel® aneAPI
Collective Comms.

— Intel Advisor - recommends action ik
optimising code Intel® oneAPI

Deep Neural Network
Library

— Intel debugger GUI

Intel® Integrated

— DevCloud - sandbox for developers Performance Primitves

Lancaster EE3
University ¢ *

Conclusions

e The after the core boom the future appears to be
heterogeneous computing

e CMS have started working on applying this
o ATLAS has been investigating various systems
e ALICE has an interesting alternative design

e Intel OneAPl is, on paper, a promising framework for

handling heterogeneous hardware with “minimal”
,, code rewrites

25

Back Up

Lancaster EE3
University #

Lancaster
University ¢ #

Example code

26

std::unique ptr<queue> g = initialize device queue();

// The range of the arrays managed by the buffer
range<!> num items{ array size };

[/
[/
[/
!/
[/
[/

Buffers are used to tell DPC++ which data will be shared between the host

and the devices because they usually don't share physical memory

The pointer that's being passed as the first parameter transfers ownership
of the data to DPC++ at runtime. The destructor is called when the buffer

goes out of scope and the data is given back to the std::arrays.

The second parameter specifies the range given to the buffer.

buffer<cl int, 1> addend 1 buf(addend l.data(), num items);
buffer<cl int, 1> addend 2 buf (addend 2.data(), num items);

buffer<cl int, 1> sum buf (sum.data(), num items);

// queue::submit takes in a lambda that is passed in a command group handler
// constructed at runtime. The lambda also contains a command group, which
// contains the device-side operation and its dependencies
g->submit ([&] (handler &h) {
Example COde // Accessors are the only way to get access to the memory owned
// by the buffers initialized above. The first get access template parameter
// specifies the access mode for the memory and the second template
// parameter is the type of memory to access the data from; this parameter
// has a default wvalue
auto addend 1 accessor = addend 1 buf.template get access<dp read>(h);
auto addend 2 accessor = addend 2 buf.template get access<dp read>(h);

// Note: Can use access::mode::discard write instead of access::mode::write
// because we're replacing the contents of the entire buffer.
auto sum accessor = sum buf.template get access<dp write>(h);

// Use parallel for to run array addition in parallel. This executes the
// kernel. The first parameter is the number of work items to use and the
// second 1s the kernel, a lambda that specifies what to do per work item.
// The template parameter ArrayAdd 1s used to name the kernel at runtime.
// The parameter passed to the lambda is the work item id of the current
// item.
//
// To remove the requirement to specify the kernel name you can enable
// unnamed lamdba kernels with the option:
I/ dpcpp —-fsycl-unnamed-lambda
h.parallel for<class ArrayAdd>(num items, [=](1d<l> 1) {

sum_accessor[i] = addend 1 accessor[i] + addend 2 accessor[i];

)

|3

28

Lancaster
University ¢ #

Example Code

// call walit and throw to catch async exception
g->walt and throw() ;

// DPC++ will engqueue and run the kernel. Recall that the buffer's data 1is
// given back to the host at the end of the method's scope.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

