
CPU optimisation

Stewart Martin-Haugh (RAL)

Efficient Computing in High Energy Physics
17 February 2020

Stewart Martin-Haugh (STFC RAL) CPU optimisation 1 / 22

Overview

I Problem domain
I HEP codebases (mainly LHC experiments)
I A grab-bag of tools useful for improving CPU/memory performance
I More details/pedagogy available in lecture format

Stewart Martin-Haugh (STFC RAL) CPU optimisation 2 / 22

https://github.com/StewMH/OptimisationWorkshop

Computing domains

High throughput computing
I Can parallelise and buffer data for later processing
I LHC, SKA - this talk
I Maximise throughput = events/second

Low latency computing
I Pointless or impossible to buffer
I High frequency trading, autonomous vehicles

High performance computing
I Problems that don’t parallelise easily - supercomputer
I Climate modelling
I Fast connections between processors, lots of RAM

Stewart Martin-Haugh (STFC RAL) CPU optimisation 3 / 22

Hardware overview

I Moore’s law stopped
helping us some time
ago
I 2003 ATLAS TDAQ

TDR estimated 8
GHz dual-core
machines

I In practice, ended up
with multi-core 2.3
GHz machines

I Memory per core has
decreased

I Need multi-threading to
make memory-efficient
use of many cores

Source: Herb Sutter
Stewart Martin-Haugh (STFC RAL) CPU optimisation 4 / 22

https://cds.cern.ch/record/616089/files/cer-002375189.pdf
https://cds.cern.ch/record/616089/files/cer-002375189.pdf
http://www.gotw.ca/publications/concurrency-ddj.htm

Architectures
x86
I Largely build our code for x86-64 Red Hat Linux
I Using the grid restricts us to low common denominator CPU

features - newer instruction sets (AVX in particular) not used
Other
I Port of ATLAS simulation to PowerPC to use Oak Ridge Summit

supercomputer
I Ports of ATLAS, LHCb to ARM

Stewart Martin-Haugh (STFC RAL) CPU optimisation 5 / 22

https://cds.cern.ch/record/2627010?ln=en
https://www.olcf.ornl.gov/summit/

HEP codebases

Language Files Lines of code
CMSSW
C++ 30050 3265146
Python 13699 1453740
Athena (ATLAS)
Language Files Lines of code
C++ 39603 3884549
Python 10624 1148465

I 3M lines of C++, 1M lines of Python
I Multi-hour build times to build entire codebase
I Code written by 100s of people over 20+ years of development
I Barrier to

I Determining what code is running at all
I Determining what code is running slowly
I Migrating to new libraries (e.g. matrix algebra)

Stewart Martin-Haugh (STFC RAL) CPU optimisation 6 / 22

Optimisation guidelines

I Start with data from a profiler: don’t try to reason about the code
I Ensure data locality - try to read array elements in sequence

a[0], a[1], a[2]

I CPU has long pipelines - Branch misprediction has a big penalty

Five stage Instruction pipeline

I Prefer vector to list, unordered_map to map
I Always reserve() vectors

Stewart Martin-Haugh (STFC RAL) CPU optimisation 7 / 22

https://danluu.com/branch-prediction/
https://en.wikipedia.org/wiki/Instruction_pipelining

Floating-point operations
Caveat: arithmetic usually in the shadow of memory access
I Addition is faster than multiplication (usually compiler will do this

for you if needed)
I Multiplication is faster than division

y=x/5.0; //Bad
y=x*0.2; //Good

I Rearrange calculations to minimise number of operations
I Compiler won’t do this for you without -Ofast

y = d*x*x*x + c*x*x + b*x + a; //Bad
y = x*(x*(x*d+c)+b) + a; //Good

I Reducing operations and branching

if (h >= 0.) {//Bad
h = min(max(0.25*h, pow((x / y), 0.25)*h), 4.*h);

} else {
h = max(min(0.25*h, pow((x / y), 0.25)*h), 4.*h);

}
h = h*min(max(0.25, pow((x / y), 0.25)), 4.);//Good

Stewart Martin-Haugh (STFC RAL) CPU optimisation 8 / 22

CPU profiling

Sampling
I interrupting with a debugger and generating a stack trace
I Some measurement overhead (depending on frequency of

interruption)
I Can generate various visualisations
I Intel VTune, gperftools, igprof

Emulating
I Callgrind (part of Valgrind) is only one I know of
I Emulates a basic modern CPU, with level 1, level 2 caches, branch

prediction (somewhat configurable)
I Runs slowly, no measurement overhead
I Information about cache misses and branch misprediction

Stewart Martin-Haugh (STFC RAL) CPU optimisation 9 / 22

http://valgrind.org/

CPU profiling
Instrumenting
I perf is now the gold standard - sampling and instrumenting
I Part of Linux kernel (best results with new kernels)
I Monitor CPU performance monitoring counters
I Also possible with VTune

I Some features require root access
perf stat -d program

10 152 172 182 cycles:u #
3,451 GHz (49,86%)

14 584 154 073 instructions:u #
1,44 insn per cycle (62,43%)

2 318 605 154 branches:u #
788,130 M/sec (74,93%)
44 768 463 branch-misses:u #

1,93% of all branches (75,00%)
4 116 170 377 L1-dcache-loads:u #

1399,150 M/sec (74,18%)
167 821 302 L1-dcache-load-misses:u #

4,08% of all L1-dcache hits (25,06%)
45 252 042 LLC-loads:u #

15,382 M/sec (24,89%)
8 794 669 LLC-load-misses:u #

19,43%
of all LL-cache hits (37,33%)

Stewart Martin-Haugh (STFC RAL) CPU optimisation 10 / 22

Instrumentation

I C++ has inbuilt timing facilities:

us ing namespace std ;
us ing namespace std : : chrono ;
auto start_t ime = high_reso lut ion_c lock : : now() ;
doSomething () ;
auto end_time = high_reso lut ion_c lock : : now() ;
cout << ”Time : ␣” << durat ion_cast<microseconds >(end_time −

start_t ime) . count () << endl ;

I Useful, but has some overhead: shouldn’t try to measure within
tight loops

I Google Benchmark builds this into a useful framework to benchmark
functions

Stewart Martin-Haugh (STFC RAL) CPU optimisation 11 / 22

https://github.com/google/benchmark

Heap profilers
I jemalloc and tcmalloc both come with low-overhead

profilers to analyse which functions allocate most
memory

I Output can be interpreted like a call-graph

Stewart Martin-Haugh (STFC RAL) CPU optimisation 12 / 22

Other memory analysis

I Is your code allocating short-lived heap variables, or writing variables
it never reads?
I Experimental tools, e.g. Find Obsolete Memory (FOM)

Stewart Martin-Haugh (STFC RAL) CPU optimisation 13 / 22

https://github.com/FOM-Tools/FOM-Tools

Optimisation example/cautionary tale
I Always implement something correct and readable first
I Then you can have fun optimising

Courtesy of reddit

Stewart Martin-Haugh (STFC RAL) CPU optimisation 14 / 22

https://www.reddit.com/r/ProgrammerHumor/comments/76y4pm/when_you_only_know_how_to_write_brute_force/

Optimisation example
I GCC and Clang compilers can reduce square example1 down to

something sensible

int square(int n)
{

int k = 0;
while (true)
{

if(k == n*n)
{

return k;
}
k++;

}
}

→
int square2(int n)
{

return n*n;
}

I Don’t second-guess the compiler: profile
I But don’t keep obviously inefficient code if it will puzzle the next

reader
1NB: Don’t write a square function, just square numbers in the code

Stewart Martin-Haugh (STFC RAL) CPU optimisation 15 / 22

https://godbolt.org/g/fpbDGs

Automatic compiler optimisation

Choice of compiler
I Clang and GCC seem to give similar results on ATLAS

reconstruction worklads
I Porting to other compilers (e.g. icc, Cray) not attempted for some

time
Overall optimisation level
I Limited difference in performance between O2 and O3
I Moving away from standard (i.e. IEEE-754 compliant) arithmetic

possible -Ofast
I Often not appropriate for HEP workflows e.g. cannot guarantee e.g.

positive input - will remove checks for sqrt(-1)
I -freciprocal-math is much more benign
I Difficult to validate algorithm behaviour under small numerical

changes

Stewart Martin-Haugh (STFC RAL) CPU optimisation 16 / 22

Link-time optimisation

I Allow compiler to reason across function units during library linking
I Potentially large benefits for larger codebases
I Problem: linker errors for the connoisseur

/tmp/smh/ccyEDIFM.ltrans0.ltrans.o:(.data.rel.ro+0x588):
undefined reference to `typeinfo for ers::Issue'

collect2: error: ld returned 1 exit status

Stewart Martin-Haugh (STFC RAL) CPU optimisation 17 / 22

Profile-guided optimisation

I The compiler doesn’t know where we’re spending most of our time
I initialize(), execute(), finalize() all get the same level of

attention
I Profile-guided optimisation (PGO)2 takes output from a profiler and

passes it to the compiler
I Downside: same code running simulation, reconstruction, trigger -

need different PGO runs (in principle - in practice?)
I How often do you need to run the profile as you develop the code?
I Evaluated for Geant4

2also known as feedback-directed optimisation (FDO)
Stewart Martin-Haugh (STFC RAL) CPU optimisation 18 / 22

https://indico.cern.ch/event/587970/contributions/2369824/attachments/1374948/2087355/slides.pdf

Auto-vectorisation

I Only enabled at O3 in GCC
I Can be fragile - no guarantee it will apply if you reorder a loop
I Better to write using vector intrinsics, but not part of most HEP

physicists’ skillset
I Ideally, use intrinsics someone else has written (e.g. Eigen,

VecGeom)
I Need function multi-versioning to use AVX etc

Stewart Martin-Haugh (STFC RAL) CPU optimisation 19 / 22

The free lunch: preloading libraries

Drop-in replacements for glibc math.h
I Intel Math Function Library (drop-in replacement for glibc

math.h) gives over 10% improvement in ATLAS reconstruction on
Intel machines - still works on AMD but not guaranteed

I AMD has a similar product (AOCL) designed for EPYC
Note that there is no agreed standard for the output of trigonometric
functions
I In practice, fairly close agreement
I ATLAS found differences with cos() when using IMF
I Least significant bit differs on machines with fused multiply-add

instruction
I How to ensure numerical stability of HEP algorithms?

Stewart Martin-Haugh (STFC RAL) CPU optimisation 20 / 22

https://developer.amd.com/amd-aocl/
https://software.intel.com/sites/default/files/managed/9d/20/FP_Consistency_300715.pdf

The free lunch: preloading libraries
Drop-in replacements for Linux default allocator (glibc malloc)
I When your program requests memory, allocator will parcel these up

into larger requests
I Switching allocator can improve throughput and/or decrease total

RAM footprint
I tcmalloc (Google, used by ATLAS)
I jemalloc (FreeBSD)
I mimalloc (Microsoft)

Stewart Martin-Haugh (STFC RAL) CPU optimisation 21 / 22

Conclusions

I Rich seam of easy and hard optimisations to apply to HEP code
I Use off-the-shelf tools as much as possible
I Needs revision as algorithms and frameworks change
I Opportunity to design new experiment software: fast and correct

from the start

Time to learn Rust?

Stewart Martin-Haugh (STFC RAL) CPU optimisation 22 / 22

