
Analysis 2.0:
New approaches
to high-level particle
physics analysis

b.krikler@cern.ch
@benkrikler

Ben Krikler

A post-doc at:

A fellow of:

A founder of:

Ben Krikler
ECHEP, Edinburgh
18th February 2020

b.krikler@cern.ch
@benkrikler

A convener of:

PyHEP

1. Showcase recent developments for
analysis of last couple of years

2. Highlight where the UK is already
playing a significant role

Goals
1. Challenges facing our field

2. Python as a solution

3. Columnar Analysis

4. FAST-HEP

ECHEP 2020, b.krikler@cern.ch

2

● High-level analysis = very final stages of processing
● This is a very broad topic: need a whole conference
● Some personal opinions: I welcome any counter-opinions!

Outline

Three
challenges
facing our field

3

ECHEP 2020, b.krikler@cern.ch 4

HSF Roadmap: DOI:
10.1007/s41781-018-0018-8

From CMS: “User data”
30% of disk space,
“Analysis” 40% of CPU

Future data
volumes:
HL-LHC

https://link.springer.com/article/10.1007%2Fs41781-018-0018-8
https://link.springer.com/article/10.1007%2Fs41781-018-0018-8

ECHEP 2020, b.krikler@cern.ch 5

A hypothesis:

Time to
insight

Time to
learn

∝ ∝
Time to

code

ECHEP 2020, b.krikler@cern.ch

Bugs and reproducibility

6

Oct. 2019
DOI:10.1021/acs.orglett.9b03216

Dec. 2006 DOI: 10.1126/science.314.5807.1856

http://dx.doi.org/10.1021/acs.orglett.9b03216
https://science.sciencemag.org/content/314/5807/1856/tab-pdf

ECHEP 2020, b.krikler@cern.ch 7

Challenge #1

Our data will
grow massively

unlike our
resources

ECHEP 2020, b.krikler@cern.ch 8

Challenge #1 Challenge #2

Our data will
grow massively

unlike our
resources

Physicists first,
developers

second: code is
slow to write &
run and often
error-prone

ECHEP 2020, b.krikler@cern.ch 9

Challenge #1 Challenge #2 Challenge #3

A paper is not
enough to

describe a HEP
analysis in a
reproducible

way

Our data will
grow massively

unlike our
resources

Physicists first,
developers

second: code is
slow to write &
run and often
error-prone

ECHEP 2020, b.krikler@cern.ch 10

Challenge #1 Challenge #2 Challenge #3

A paper is not
enough to

describe a HEP
analysis in a
reproducible

way

Our data will
grow massively

unlike our
resources

Physicists first,
developers

second: code is
slow to write &
run and often
error-prone

Rethink our
approach

ECHEP 2020, b.krikler@cern.ch 11

Solution #1

Too much data:

What does “Big
data” do?

Use resources
more

intelligently

Solution #2

Good code is
tough:

Adopt easier
languages and
open source

practices

Solution #3

Irreproducibility:

Reduce gap
between paper

and actual
analysis code

Python for
Particle Physics

12

● Interoperability with other languages
○ Bindings to C++, fortran, etc

○ We can continue using existing tools (if wanted)

● Perfect for exploratory work
○ No compiling

○ Little boilerplate code

○ E.g. Jupyter notebooks (though this is no longer

python-only)

● Package ecosystem
○ “Batteries included” so standard library provides many

functions: argparse, globbing, regular expressions, URL

requests, math

○ Package manager gives access to huge community-driven

ecosystem

○ “Open-source” by default

Why Python
for scientific
research?

13

Adapted from Jake Vander Plas’

The unexpected effectiveness

of Python in Scientific Research

ECHEP 2020, b.krikler@cern.ch

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

ECHEP 2020, b.krikler@cern.ch 14

Jake
VanderPlas:
PyCon 2017

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

ECHEP 2020, b.krikler@cern.ch

As a result: Python world’s most popular language

15

PYPL index, Dec. 2019: based on web searches
for tutorials on a given language

Stack Overflow queries: Since 2017
Python has been most popular

● Data analysis outside of particle physics
not in C++ these days:
○ It’s primarily in Python
○ ⇒ guidance and tutorials already online
○ ⇒ more useful for students after a PhD
○ ⇒ use industry-standard tools with little extra

work ⇒ free personpower

● For example: machine learning
○ https://github.com/josephmisiti/awesome-machine-learning

○ 291 libraries in Python
○ 59 tools in C++

Why Python
for high-level
particle
physics
analysis?

16

ECHEP 2020, b.krikler@cern.ch

https://github.com/josephmisiti/awesome-machine-learning

ECHEP 2020, b.krikler@cern.ch

This is not a new message

17

On CMS: most users’ code
outside of CMSSW is now Python

https://gist.github.com/jakevdp/f75c09e43320290ffb
edbca43f9fd917

Easily the dominant
language in Astrophysics

Analysis by Jim Pivarski

https://gist.github.com/jakevdp/f75c09e43320290ffbedbca43f9fd917
https://gist.github.com/jakevdp/f75c09e43320290ffbedbca43f9fd917

ECHEP 2020, b.krikler@cern.ch

Full experiment stack: Xenon1T

DAQ, trigger, reco and
analysis code all in
python

Chris Tunnel for
Xenon1T, PyHEP2018
https://zenodo.org/re
cord/1418513

18

https://zenodo.org/record/1418513
https://zenodo.org/record/1418513

Point 1:
Python as a 1st class analysis
language: many examples in

HEP & lots to be gained

19

But:
“isn’t Python

slow?”

Sort of:
● Interpreted not compiled
● Global Interpreter Lock: standard

interpreted not multi-threaded
● Dynamically typed: attribute look-up

more involved
● Primitive types use relatively large

Although:
● Python can now be Just in time

compiled (e.g. Numba)
● Other interpreters maturing (e.g.

PyPy)

And, crucially, there are other ways of
doing things….

20

ECHEP 2020, b.krikler@cern.ch

Columnar
Analysis

21

22

How do I say:

in french ?

“He’s as cool as a
 cucumber”

ECHEP 2020, b.krikler@cern.ch

23

“Il a froid comme
 un concombre” ×

ECHEP 2020, b.krikler@cern.ch

24

“Il est d'un calme
 olympien” ✓

ECHEP 2020, b.krikler@cern.ch

“He is calmly Olympian”

25

which is a long way to say:
to get good results when going
from C++ to Python change
how you think, not just the
words

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch

Numpy

26

O(N) python instructions

Pure python loop over px and py pairs:

*Summary shamelessly ripped from Chris Burr, CERN

Manipulate arrays of data in one go using high-level interface

ECHEP 2020, b.krikler@cern.ch

Numpy

27

O(N) python instructions

Pure python loop over px and py pairs: Using numpy array operations:

O(1) python instructions
O(N) heavily optimised instructions

*Summary shamelessly ripped from Chris Burr, CERN

Manipulate arrays of data in one go using high-level interface

ECHEP 2020, b.krikler@cern.ch

Numpy
Manipulate arrays of data in one go using high-level interface

28

O(N) python instructions

Pure python loop over px and py pairs: Using numpy array operations:

O(1) python instructions
O(N) heavily optimised instructions

Numpy operations are: Single Instruction Multiple Data (SIMD)

*Summary shamelessly ripped from Chris Burr, CERN

ECHEP 2020, b.krikler@cern.ch

A high-level interface to low-level routines:
● Uses vectorized programming in CPU for efficiency
● Supports multi-dimensional arrays

Numpy (2)

29

ECHEP 2020, b.krikler@cern.ch

A high-level interface to low-level routines:
● Uses vectorized programming in CPU for efficiency
● Supports multi-dimensional arrays

But this is python:
● Dynamic nature of language
● Package ecosystem
● ⇒ Cupy: Same user code can run on GPUs
● See also PyHEADTAIL

Numpy (2)

30

https://indico.cern.ch/event/833895/contributions/3577801/attachments/1927448/3191144/oeftiger_gpus_in_python_static.pdf

ECHEP 2020, b.krikler@cern.ch

A high-level interface to low-level routines:
● Uses vectorized programming in CPU for efficiency
● Supports multi-dimensional arrays

But this is python:
● Dynamic nature of language
● Package ecosystem
● ⇒ Cupy: Same user code can run on GPUs
● See also PyHEADTAIL

Difficulties for HEP:
● Getting data from ROOT files into such arrays without a for-loop
● Our data is often more structured than simple arrays

Numpy (2)

31

https://indico.cern.ch/event/833895/contributions/3577801/attachments/1927448/3191144/oeftiger_gpus_in_python_static.pdf

ECHEP 2020, b.krikler@cern.ch

Filling a ROOT Tree in ROOT w. event loop

32

Class Event:

Int id

Enum type

Vector<Float> pulse_amplitudes

Function WriteTree():

TFile file(“outfile”)

TTree tree(...)

Event an_event

tree.Branch(“event”, &an_event)

For each event:

an_event.id = event number

an_event.type = some event type

For each pulse:

an_event.pulse_amplitudes.append(some value)

tree.Fill()

tree.Write()

Event #1

2 3 1 880 ER

id type amplitudes

Event #2

7 131 ER

id type amplitudes

Event #3

2 34 12 NR

id type amplitudes

Builds events that look like:Pseudo-code (not python or c++)

ECHEP 2020, b.krikler@cern.ch

… which on disk ROOT’s split mode makes

33

Event #1

2 3 1 880 ER

id type
amplitudes

Event #2

1 ER

id type amplitudes

Event #3

2 NR

id type amplitudes

0

1

2

ER

ER

NR

2

3

1

88

7

13

2

34

1

4

2

3

7 13

2 34 1

sizes values

Tree

id type amplitudes

ECHEP 2020, b.krikler@cern.ch

ROOT file splitting

Fails for complex objects e.g. vectors of vectors of floats in each
event

Improves compression on disk

Is why SetBranchStatus speeds up reading back data: only read
the branches you want

The on disk layout of split branches is a set of contiguous arrays
● Read all data for a branch directly into a numpy array

34

id type
amplitudes

0

1

2

ER

ER

NR

2

3

1

88

7

13

2

34

1

4

2

3

sizes values

Tree

35

● Uproot = micro pythonic ROOT
○ Does one thing: Read (and now write) ROOT files in python
○ Efficient TTree handling: baskets of data on disk copied

into numpy array directly
○ About 2 years old -- one of the most important packages

for particle physics with python

● Uproot can now write trees as well as read them
○ Currently limited to writing single values per event
○ Vectors of values per event expected soon

● After this: uproot will be maintenance only, no
other major developments planned

But how to make “numpy arrays” for variables
with different lengths in each event?

ECHEP 2020, b.krikler@cern.ch

https://github.com/scikit-hep/uproot

ECHEP 2020, b.krikler@cern.ch

Jagged Arrays

36

2

3

1

88

7

13

2

34

1

4

6

9

stops values

Jagged Array
internals

0

4

6

starts

Something like a 2D numpy
array

E.g. array.max() gives the
largest value in each event

2 3 1 88

7 13

2 34 1

Jagged Array as
a user sees it

#1

#2

#3

ECHEP 2020, b.krikler@cern.ch

Jagged Arrays
For example, find the momentum of the most forward-going
jet in each event:

pt = Jet_pt[numpy.abs(Jet_eta).argmax()]

Break it down:
● numpy.abs(Jet_eta)= absolute eta of every jet in

every event
● numpy.abs(Jet_eta).argmax()= index of jet with

largest absolute eta for each event. Number between 0
and Njet

● Jet_pt[numpy.abs(Jet_eta).argmax()]= pt of the
jet with the largest absolute eta for each event, now a
simple 1D array

37

38

● Implements the concept of jagged arrays
○ Broadcasting, masking, reducing

● Methods to manipulate these without a python
for loop: very quick operations
○ Internally using numpy

● Version 1.0 should be released soon:
○ Rewrite the internals

○ Tidy up the interface

○ Let other packages interpret awkward arrays easily

(numba, numexpr)

ECHEP 2020, b.krikler@cern.ch

https://github.com/scikit-hep/awkward-array

Coffea -
Column
Object
Framework
for Effective
Analysis

Fermilab project to build an analysis framework on top of
awkward array and uproot

Separation of “user code” and “executors”
● User writes a Processor to do the analysis
● Executor runs this on different distributed job systems, e.g.:

○ Local multiprocessing, Parsl or Dask (batch systems),
Spark cluster

Coffea achieved 1 to 3 MHz event processing rates
● Using Spark cluster on same site as data at Fermilab

39

ECHEP 2020, b.krikler@cern.ch

Point 2:
Interfacing to “big data” tools

can bring MHz event
processing

40

PyHEP: Building
a community for
Python in HEP

41

PyHEP 2019 workshop Building a community of Python users and
developers within particle physics

55 people for 2.5 days at Cosener’s House in
Abingdon

Second in series, first at CHEP ‘18 (Sofia, Bulgaria)

Indico page: https://indico.cern.ch/e/PyHEP2019

3rd edition: July 2020 in Austin, Texas alongside
SciPy2020

42ECHEP 2020, b.krikler@cern.ch

https://indico.cern.ch/e/PyHEP2019
https://www.scipy2020.scipy.org/

43
ECHEP 2020, b.krikler@cern.ch

PyHEP2020
indico.cern.ch/e/PyHEP2020
11 to 13th July in Austin, Texas

Co-located with SciPy (6 - 12th)

https://indico.cern.ch/e/PyHEP2020

scikit-hep

44

The success of Python for astronomy is partly due to the
Astropy project

Uproot and Awkward-array exist within scikit-hep project

Many other packages on there:
● Particle: Python interface to PDG

● Validation, Particle Decays, Statistics
http://scikit-hep.org/

https://github.com/scikit-hep/

ECHEP 2020, b.krikler@cern.ch

http://scikit-hep.org/
https://github.com/scikit-hep/

Particle Physics loves histograms!

But matplotlib is a little tricky with pre-binned
data

Survey on plotting needs:

● Stacked histograms
● Good error bars
● Ratios of 1D plots
● Simple “COLZ” option
● Consistent plot styling

Mpl-hep package should become associated
with matplotlib (spoken with matplotlib devs)

mpl-hep

45

ECHEP 2020, b.krikler@cern.ch

Fitting

46

Many presentations on fitting and statistics

Using TensorFlow as a backend:

● Zfit -- focussed on unbinned fits, adapting deep
learning techniques for model fitting

● PyHF -- store the entire likelihood on HEPData

From zfit

ECHEP 2020, b.krikler@cern.ch

Point 3:
We’re growing a community of

Python HEP users
(and 2 of 3 convenors in the UK)

47

48

User decides flow control

Writing full jagged array

manipulations can be tough (e.g.

object matching)

ECHEP 2020, b.krikler@cern.ch

But: Is Python
“high-level”

enough?

Analysis
description
languages

49

ECHEP 2020, b.krikler@cern.ch 50

Representation of the analysis

Al
l y

ou
r e

xp
er

im
en

t’s
 d

at
a

Processing system

Plots
Tables

Analysis versus analysis tools

● Separation of “the analysis” from the “the processing system”
● The main product of an analysis should be the repository

Declarative
programming

● Declarative languages the user says WHAT, the

interpretation decides HOW

● User gives up flow control:

○ Cannot do: “Loop over each event, add this to
that if something is true, etc”

● Allows:

○ More concise description
○ Fewer bugs
○ Easier to reproduce and share
○ Optimisation behind the scenes

51

ECHEP 2020, b.krikler@cern.ch

From the
description to
a workflow

Description → Directed
Acyclic Graph (DAG) = the
“how”

● Common to Spark,
Dask, Parsl, Airflow, etc

● Allows for caching at
each node

● Can optimise the DAG:
“elide” (remove) nodes if
result is never used

52

ECHEP 2020, b.krikler@cern.ch

Analysis
description
languages

53

A large fraction of LHC analyses involve only a few steps

Can we encapsulate these into a “Domain Specific
Language”?

Several different attempts to build an ADL:
● LINQ (Gordon Watts et al)
● NAIL (Andrew Rizzi)
● FAST-HEP (this talk)
● Dedicated workshop at Fermilab last May:

https://indico.cern.ch/event/769263/

ECHEP 2020, b.krikler@cern.ch

https://indico.cern.ch/event/769263/contributions/3406076/attachments/1839508/3016560/2019-05-07_-_Analysis_Languages.pdf
https://indico.cern.ch/event/769263/contributions/3413006/attachments/1840145/3016759/NAIL_Project_Natural_Analysis_Implementation_Language_1.pdf
https://indico.cern.ch/event/769263/

54

 toolkit

The

F.A.S.T = Faster
Analysis Software
Taskforce
● UK-based particle physicists

● Started around May 2017

● Explore ways to accelerate and

improve our analysis code

● Use of 1 to 3-day “hack-shops” to
test new ideas

55

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch

How we have worked

Design principles:

● Write as little code as
possible: act as glue

● Contribute first to other
projects

● Value modularity

56

Goals:

a. Reproducibility
b. Simplicity
c. Speed
d. Documentation
e. Automation

ECHEP 2020, b.krikler@cern.ch

Streamlining analysis

57

ECHEP 2020, b.krikler@cern.ch 58

The FAST toolkit

NumExpr

()

For internals:
use Python

ECHEP 2020, b.krikler@cern.ch 59

NumExpr

For data:
use Pandas
Demoed at CHEP 2018

()

The FAST toolkit
For internals:
use Python

60

What is Pandas?
● Programmatic tables, built on numpy
● A staple of data science
● https://pandas.pydata.org/ “Pandas is an open source,

BSD-licensed library providing
high-performance, easy-to-use

data structures and data
analysis tools for the Python

programming language.”

ECHEP 2020, b.krikler@cern.ch

https://pandas.pydata.org/

ECHEP 2020, b.krikler@cern.ch 61

NumExpr

For data:
use Pandas
Demoed at CHEP 2018

For descriptions:
use YAML...

()

The FAST toolkit
For internals:
use Python

- martin:

 name: Martin Devloper

 job: Developer

 skills:

 - python

 - perl

 - pascal

- tabitha:

 name: Tabitha Bitumen

 job: Developer

 skills:

 - lisp

 - fortran

 - erlang

Describing analysis
with YAML

● A superset of JSON
○ Easier to read

● Naturally declarative:
○ No “control flow” (e.g. no for loops)

● Widely used to describe pipeline configuration:
○ gitlab-CI, travis-CI, Azure CI/CD, Ansible,

Kubernetes, etc
○ HEPData: YAML for reproducible Data

62

[{"martin":{"name": "Martin Devloper",

 "job": "Developer",`

 "Skills": ["python", "perl", "pascal"]}

,{"tabitha":{"name": "Tabitha Bitumen", "job":

"Developer", "Skills": ["lisp", "fortran",

"erlang"]}}]

YAML

JSON

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch 63

Al
l y

ou
r e

xp
er

im
en

t’s
 d

at
a

What datasets do
you need?

What is their
analysis-specific
meta-data?

What do you
want to do with
this data?

How do you want
to present these
results?

Processing system

Plots
Tables

Processing system

Analysis versus analysis tools

ECHEP 2020, b.krikler@cern.ch 64

Step 1:
fast_curator

Dataset
description

Step 2:
fast_carpenter

(using fast-flow)

Analysis
description

Step 3:
fast_plotter
fast_datacard

Plotting and
postprocessing

ECHEP 2020, b.krikler@cern.ch 65

Step 2:
fast_carpenter

Analysis
description

Take your trees and make them into tables
● Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:
● Histogram
● Cutflow

Cover most typical particle physics analyses
● BUT: very easy to extend

Command-line switch between different
work-flow managers / batch systems

ECHEP 2020, b.krikler@cern.ch 66

Step 2:
fast_carpenter

Analysis
description

Take your trees and make them into tables
● Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:
● Histogram
● Cutflow

Cover most typical particle physics analyses
● BUT: very easy to extend

Command-line switch between different
work-flow managers / batch systems

ECHEP 2020, b.krikler@cern.ch 67

Step 2:
fast_carpenter

Analysis
description

Take your trees and make them into tables
● Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:
● Histogram
● Cutflow

Cover most typical particle physics analyses
● BUT: very easy to extend

Command-line switch between different
work-flow managers / batch systems

Describe what to do with the data

stages:

 - Stage1: StageFromBackend

 - Stage2: module.that.provides.some.Stage

 - IMPORT: "{this_dir}/another_description.yaml"

Stage1:

 keyword: value

 another_keyword: [a, list, of, values]

Stage2:

 arg1:

 takes: ["a", "dict"]

 with: 3

 different: keys

68

What type of action to take at each step:
● Stage1 = A built-in stage of fast-carpenter
● Stage2 = A stage imported from a python module
● IMPORT = Import a list of stages and their

descriptions from another YAML file

Configure each named stage above

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch

Define Stage:
fast_carpenter.Define

69

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the

“jaggedness”

From Joosep
Pata’s talk at
PyHEP19

ECHEP 2020, b.krikler@cern.ch

Define Stage:
fast_carpenter.Define

70

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the

“jaggedness”

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Take the Nth object
(on the deepest dimension)

From Joosep
Pata’s talk at
PyHEP19

ECHEP 2020, b.krikler@cern.ch

Define Stage:
fast_carpenter.Define

71

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the

“jaggedness”

- NIsoMuon:

 formula: IsoMuon_Idx

 reduce: count_nonzero

- IsoMuPtSum:

 formula: Muon_Pt

 reduce: sum

 mask: IsoMuon_Idx

● Reduce dimensionality with a
function

● Mask out objects in the event

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Take the Nth object
(on the deepest dimension)

From Joosep
Pata’s talk at
PyHEP19

Select events
fast_carpenter.CutFlow

Remove events from subsequent stages

Produces a cut-flow summary table
● Weighted / raw counts

Selection is specified as nested dictionaries
of All, Any and a list of expressions

Individual cuts use same scheme as variable
definition

72

DiMu_controlRegion:

 weights: {nominal: weight}

 selection:

 All:

 - {reduce: 0, formula: Muon_pt > 30}

 - leadJet_pt > 100

 - DiMuon_mass > 60

 - DiMuon_mass < 120

 - Any:

 - nCleanedJet == 1

 - DiJet_mass < 500

 - DiJet_deta < 2

ECHEP 2020, b.krikler@cern.ch

Fill a histogram
fast_carpenter.BinnedDataFrame

fast_carpenter.BuildAghast ● Binning scheme:
○ Assume variable already discrete

(eg. NumberHits)

○ Equal-width bins over a range

(eg. DiMuonMass)

○ List of bin edges

● Event weights
○ Multiple weight schemes add columns

● Output written to disk:

○ Pandas to produce a dataframe in any

format

○ Also (experimentally) to a Ghast

73

NumberMuons:

 binning:

- {in: NMuon}

- {in: NIsoMuon}

 weights: [EventWeight, EventWeight_NLO_up]

DiMuonMass:

 binning:

- in: DiMuon_Mass

 bins: {low: 60, high: 120, nbins: 60}

 weights: {weighted: EventWeight}

ECHEP 2020, b.krikler@cern.ch

Output of
BinnedDataframe

stage

74Showing only first three rows for each dataset (using groupby operation)
ECHEP 2020, b.krikler@cern.ch

User-defined
stages

● Carpenter should provide most commonly needed

stages

● But if it doesn’t: can define your own
○ Break out of declarative YAML to full, imperative python

● Any importable python class with the correct interface

● Keep separation of analysis decision from data-flow
75

stages:

 - BasicVars: fast_carpenter.Define

 - DiMuons: cms_hep_tutorial.DiObjectMass

 - Histogram: BinnedDataframe

…

DiMuons:

 mask: IsoMuon_Idx

ECHEP 2020, b.krikler@cern.ch

def event(self, chunk):

 # Get the data as a pandas dataframe

 px, py, pz, energy = chunk.tree.arrays(self.branches, outputtype=tuple)

 # Rename the branches so they're easier to work with here

 if self.mask:

 mask = chunk.tree.array(self.mask)

 px = px[mask]

 py = py[mask]

 pz = pz[mask]

 energy = energy[mask]

 # Find the second object in the event (which are sorted by Pt)

 has_two_obj = px.counts > 1

 # Calculate the invariant mass

 p4_0 = TLorentzVectorArray(px[has_two_obj, 0], py[has_two_obj, 0],

 pz[has_two_obj, 0], energy[has_two_obj, 0])

 p4_1 = TLorentzVectorArray(px[has_two_obj, 1], py[has_two_obj, 1],

 pz[has_two_obj, 1], energy[has_two_obj, 1])

 di_object = p4_0 + p4_1

 # insert nans for events that have fewer than 2 objects

 masses = np.full(len(chunk.tree), np.nan)

 masses[has_two_obj] = di_object.mass

 # Add this variable to the tree

 chunk.tree.new_variable(self.out_var, masses)

 return True

User-defined
stages

76

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch 77

fast-plotter:
● Easy to produce basic plots, tools to

support final publication-quality

● Command-line tool with reasonable
defaults and simple configuration

fast-datacard:
● Bring resulting DataFrames into CMS’

Combine fitting procedures

Step 3:
fast_plotter
fast_datacard

Plotting and
postprocessing

BinnedDataframes
into plots

● Plot on the right with:
fast_plotter -y log \
-c plot_config.yml \
-o tbl_*.csv

● YAML config:
○ Colour scheme, axis labels
○ Dataset definition
○ Annotations
○ Legend

78

Plot of DiMuonMass using binned dataframe from
fast-carpenter stage

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch

“Analysis in a CI pipeline”

● To run this:
○ Demo analysis in a pipeline
○ The gitlab-ci config
○ Script tying the commands together

● Feasibility for huge datasets unclear, but can happily manage subsets of data
for testing

79

https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/pipelines/734469
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/.gitlab-ci.yml
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/pipeline/Makefile

Just how
“fast” is this?

On a laptop: as quick as a C++ equivalent

For example, the demo repo:
● fast-carpenter: 6 seconds
● C++ example: 4 seconds

More benchmarks and examples on their way

Many optimisations possible
● caching, DAG optimisation, etc
● started working with Coffea to use them under the

hood

80

ECHEP 2020, b.krikler@cern.ch

Current
FAST-HEP
codebase

81

Being used for 2 CMS analyses, LUX-ZEPLIN and ATLAS
investigated, used for design studies of DUNE, and FCC
experiments

New features being fed back to core packages from
analysis-specific repositories
● Direct use in Jupyter notebooks
● Writing skimmed / slimmed outputs
● Persistency outside of CSV formats
● Docker container for running at NERSC, etc

ECHEP 2020, b.krikler@cern.ch

Where to find the code

● All public on github:
○ github.com/fast-hep/
○ Main package:

github.com/fast-hep/fast-carpenter

● On PyPI, e.g. fast-carpenter

● Docker image with all tools: fasthep/fast-hep-docker

● Docs: fast-carpenter.readthedocs.io/

● Clonable demo analysis repository:
○ gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial

● Chat: gitter.im/FAST-HEP 82

ECHEP 2020, b.krikler@cern.ch

https://github.com/fast-hep/
https://github.com/fast-hep/fast-carpenter
http://pypi.org/project/fast-carpenter
https://hub.docker.com/r/fasthep/fast-hep-docker
https://fast-carpenter.readthedocs.io/
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial
https://gitter.im/FAST-HEP/community

Point 4:
FAST-HEP has been exploring
new ideas for about 2.5 years:

where should we go next?

83

Wrapping up

84

ECHEP 2020, b.krikler@cern.ch

Summary

85

Particle physics faces major computing challenges
● Lots of data
● Fewer relative resources

Python is a first class analysis language
● E.g. industry, astrophysics
● We seem to be at a tipping point within HEP?

Many new approaches to integrate HEP analyses with other tools
● PyHEP and scikit-hep projects
● Columnar Data Analysis

FAST-HEP has been exploring new approaches within the UK
● Resulting tools seeing use on several experiments

How can we best capitalise on these existing UK-led endeavours ?

ECHEP 2020, b.krikler@cern.ch

Links to talks that inspired this

Andrea Rizzi: CHEP 2019
https://indico.cern.ch/event/773049/contributions/3581369/attachments/1940586/3217540/Rizzi_CHEP.pdf

Jim Pivarski: CHEP 2018 plenary:
https://indico.cern.ch/event/587955/contributions/3012337/attachments/1683637/2706186/pivarski-che

p-analysistools.pdf

Jim Pivarski: CHEP 2018 parallel:
https://indico.cern.ch/event/587955/contributions/2937525/attachments/1678398/2695563/pivarski-chep-columnardata.pdf

Jake VanderPlas: PyCon 2017
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

Jake VanderPlas: PyCon 2018

https://speakerdeck.com/jakevdp/seven-strategies-for-optimizing-numerical-code

86

https://indico.cern.ch/event/773049/contributions/3581369/attachments/1940586/3217540/Rizzi_CHEP.pdf
https://indico.cern.ch/event/587955/contributions/3012337/attachments/1683637/2706186/pivarski-chep-analysistools.pdf
https://indico.cern.ch/event/587955/contributions/3012337/attachments/1683637/2706186/pivarski-chep-analysistools.pdf
https://indico.cern.ch/event/587955/contributions/2937525/attachments/1678398/2695563/pivarski-chep-columnardata.pdf
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/seven-strategies-for-optimizing-numerical-code

Thank You

87

b.krikler@cern.ch
@benkrikler

ECHEP 2020, b.krikler@cern.ch

The future HEP code landscape (?)

88

Fortran
C++ Python A.D.L.

C

HLS / Cuda / OpenMP

High
level

Low
level

ECHEP 2020, b.krikler@cern.ch

The future HEP code landscape (?)

89

Fortran
C++ Python

Particle generators

Trigger and DAQ

C

HLS / Cuda / OpenMP

Detector simulations

Reconstruction

High-level Analysis

Process steering

What are they used for?

High
level

Low
level A.D.L.

ECHEP 2020, b.krikler@cern.ch

1st year HEP PhD student

Finishing HEP PhD student
Applied / detector PhD student

Analysis teamsSims / reconstruction experts

The future HEP code landscape (?)

90

Fortran
C++ Python

Particle generators

Trigger and DAQ

C

HLS / Cuda / OpenMP

Detector simulations

Reconstruction

High-level Analysis

Process steering

Who needs to know them?

What are they used for?

High
level

Low
level A.D.L.

Jupyter Notebook?

91

● Great:
○ Mixing code, documentation, and

results

● Bad:
○ Code can still be dense

○ Scaling to full analysis?

○ Connecting to batch system tricky

○ Version control

● Carpenter can be used via Python

API: provide python dicts instead of
YAML
○ Addresses some of bad points

above

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch

DecayLanguage

92

Programmatic interface to:
● Parametrise
● Visualise
● And generate from

Particle decay chains

Mainly used on LHCb so far

Helpful for our background tables?
● Can extend particle data with isotope specifications

Panel
and
PyViz

93

Keynote on
interactive data
exploration using
Panel

● https://medium.co
m/@philipp.jfr/pan
el-announcement-
2107c2b15f52

ECHEP 2020, b.krikler@cern.ch

https://medium.com/@philipp.jfr/panel-announcement-2107c2b15f52
https://medium.com/@philipp.jfr/panel-announcement-2107c2b15f52
https://medium.com/@philipp.jfr/panel-announcement-2107c2b15f52
https://medium.com/@philipp.jfr/panel-announcement-2107c2b15f52

ECHEP 2020, b.krikler@cern.ch

Future data volumes: HL-LHC

94

https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/images/optimistic-nominal-19.png

Now ~150 fb-1

+11 years: x8

+18 years: x22

ECHEP 2020, b.krikler@cern.ch

Processing trends

Moore’s law faltering:
predictions for early 2020s

Manufacturers abandoning
“transistors per chip” metric
already

Operating frequency fixed
(“Dennard Scaling” has stopped)

Seeing more cores per chip:
need more parallelisation

95

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

ECHEP 2020, b.krikler@cern.ch

Square Kilometer Array

96

Minh Huynh, CHEP 2019
The Square Kilometre Array Computing

> 600 PB per year for around 50 years
⇒ 30 Exabytes of data
⇒ “Exascale computing”

https://indico.cern.ch/event/773049/contributions/3581362/attachments/1937710/3211780/SKA_SDP_SRC_CHEP_Huynh_upload.pdf

Interplay in
a typical
user’s
analysis
repo

97

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch

Scikit-validate

98

● Luke’s package grown out of FAST hack-shops

● Predominantly used on LZ so far

● Interested from various people in the room to use it

Hack-shop=
 ½ hackathon + ½ workshop
● Talks to set the scene, get everyone up to speed, layout goals

○ Given newcomers: Today will also be walkthrough / tutorial

● Focussed hacking: people “in a room” for a couple of days
○ e.g. “play” with setting up an analysis using these tools

● Feel free to ask questions at any time
○ Collaborative not competitive like traditional hackathon
○ Slack or Zoom

99
ECHEP 2020, b.krikler@cern.ch

100

Resulting cut-flow outputs from EventSelection config on
earlier slide

Output
of
CutFlow
stage

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch 101

Step 1:
fast_curator

Dataset
description

Curator: what files do you want to work on?

Dataset descriptions don’t change often
● Track descriptions in repo, easy to review

Command line tool to help write YAML
● Wild-card on the command line
● Hooks ready for experiment-specific

catalogues, e.g. CMS DAS
● Integrate with Rucio (?)

102

datasets:

 - eventtype: data

 Files: [input_files/HEPTutorial/files/data.root]

 name: data

 nevents: 469384

 - files:

 - input_files/HEPTutorial/files/dy.root

 - input_files/HEPTutorial/files/dy_2.root

 name: dy

 nevents: 77729

 nfiles: 2

defaults:

 eventtype: mc

 nfiles: 1

 tree: events

import:

 - "{this_dir}/WW.yml"

 - "{this_dir}/WZ.yml"

Dataset description

● Each dataset has a list of files
● A unique dataset name

● Can Import other dataset files
● Build complex nested dataset descriptions

● Default metadata

ECHEP 2020, b.krikler@cern.ch

An example
set of stages stages:

 # Just defines new variables

 - BasicVars: Define

 # A custom class to form the invariant mass of a

 # two-object system

 - DiMuons: cms_hep_tutorial.DiObjectMass

 # Filled a binned dataframe

 - NumberMuons: fast_carpenter.BinnedDataframe

 # Select events by applying cuts

 - EventSelection: CutFlow

 # Fill another binned dataframe

 - DiMuonMass: BinnedDataframe

103

ECHEP 2020, b.krikler@cern.ch

ECHEP 2020, b.krikler@cern.ch 104

ECHEP 2020, b.krikler@cern.ch 105

ECHEP 2020, b.krikler@cern.ch 106

ECHEP 2020, b.krikler@cern.ch 107

ECHEP 2020, b.krikler@cern.ch 108

Jake
VanderPlas:
PyCon 2017

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

ECHEP 2020, b.krikler@cern.ch 109

Jake
VanderPlas:
PyCon 2017

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

ECHEP 2020, b.krikler@cern.ch 110

Jake
VanderPlas:
PyCon 2017

https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science
https://speakerdeck.com/jakevdp/the-unexpected-effectiveness-of-python-in-science

