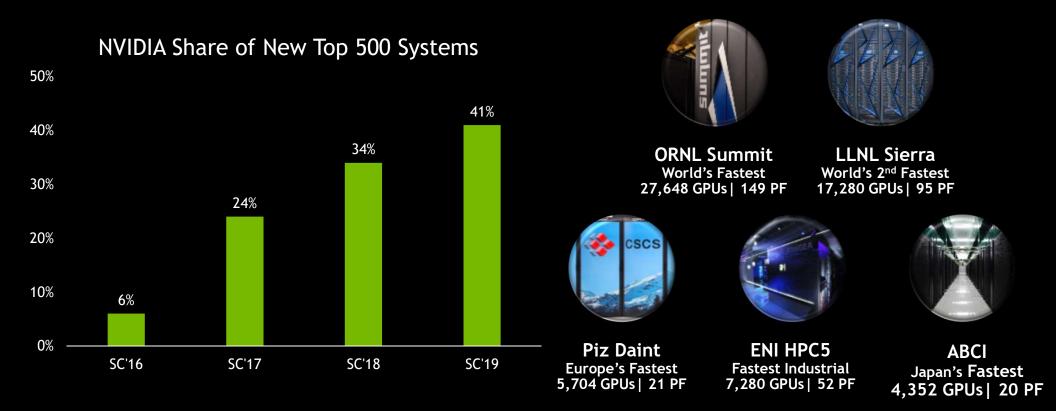


NVIDIA CUDA PLATFORM

Paul Graham, Senior Solutions Architect, NVIDIA ECHEP February 2020

FORCES SHAPING HIGH PERFORMANCE COMPUTING

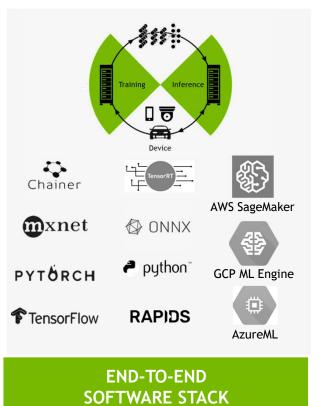


END OF MOORES LAW

ACCELERATED COMPUTING

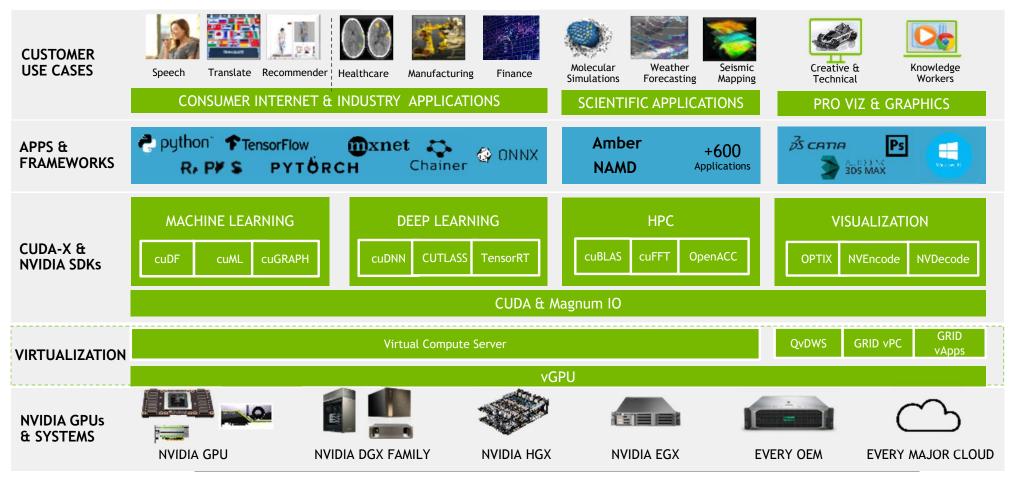
AI - A NEW TOOL FOR SCIENCE

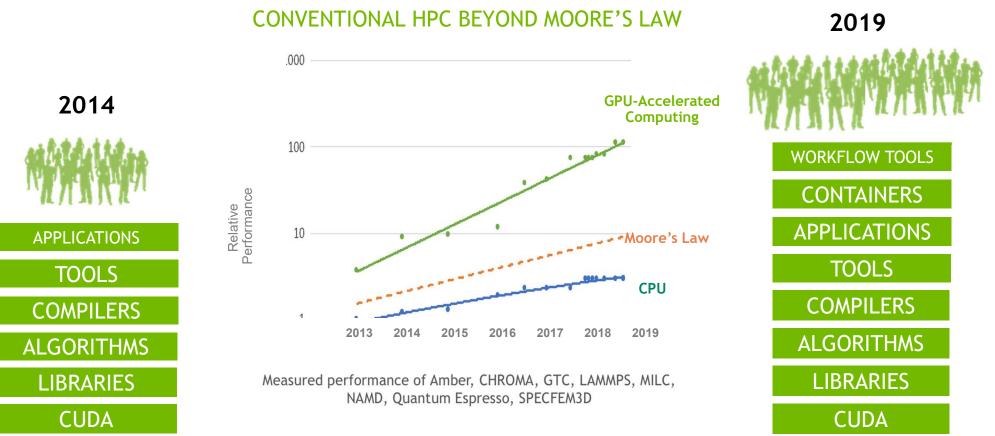
NVIDIA ACCELERATED COMPUTING IS ACCELERATING


MOST ADOPTED PLATFORM FOR ACCELERATING AI

8 MLPerf 0.6 Training Records

	Benchmark	Record						
cord	Object Detection (Heavy Weight) Mask R-CNN	18.47 Mins						
At Scale Record	Translation (Recurrent) GNMT	1.8 Mins						
At Sc	Reinforcement Learning (MiniGo)	13.57 Mins						
Per Accelerator Record	Object Detection (Heavy Weight) Mask R-CNN	25.39 Hrs						
	Object Detection (Light Weight) SSD	3.04 Hrs						
	Translation (Recurrent) GNMT	2.63 Hrs						
	Translation (Non-recurrent)Transformer	2.61 Hrs						
Pe	Reinforcement Learning (MiniGo)	3.65 Hrs						

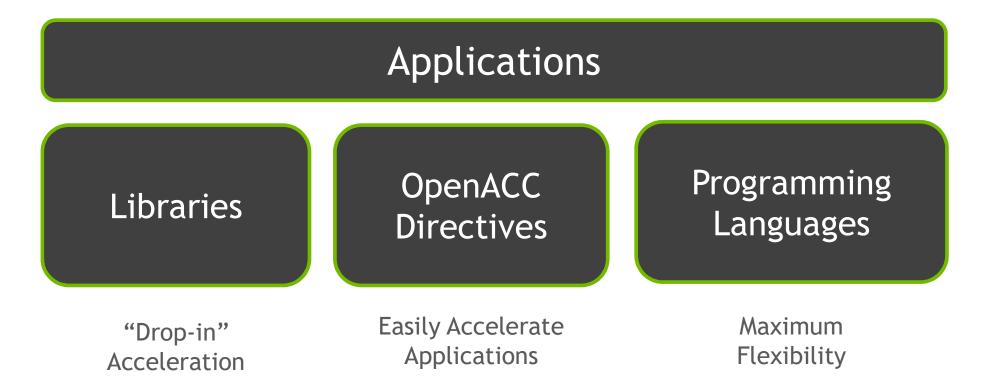

RECORD-SETTING PERFORAMNCE


C-) Alibaba Cloud	aws	Google Cloud						
IBM Cloud	Microsoft Azure	Tencent Cloud						
Cloud Services								
Atos		D¢LL						
FUJITSU	Hewlett Packard Enterprise	IBM						
inspur	Lenovo	SUPERMICR						
Systems								
AVAILABLE EVERYWHERE								

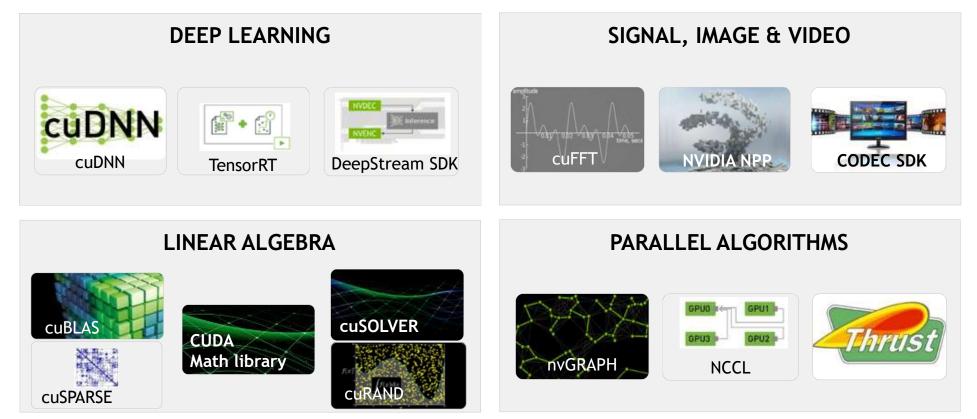
NVIDIA ACCELERATED DATA CENTER PLATFORM

Single Platform Drives Utilization and Productivity

PROGRESS OF STACK IN 6 YEARS


3X MORE PERFORMANCE IN 2 YEARS Beyond Moore's Law

Benchmark Application: Amber [PME-Cellulose_NVE], Chroma [szscl21_24_128], GROMACS [ADH Dodec], GTC [moi#proc.in], LAMMPS [LJ 2.5], MILC [Apex Medium], NAMD [stmv_nve_cuda], Quantum Espresso [AUSURF112-jR], SPECFEM3D [four_material_simple_model]; TensorFlow [ResNet 50] VASP [Si Huge]; [GPU node: with dual-socket CPUs with 4x V100 GPU.


🕘 NVIDIA,

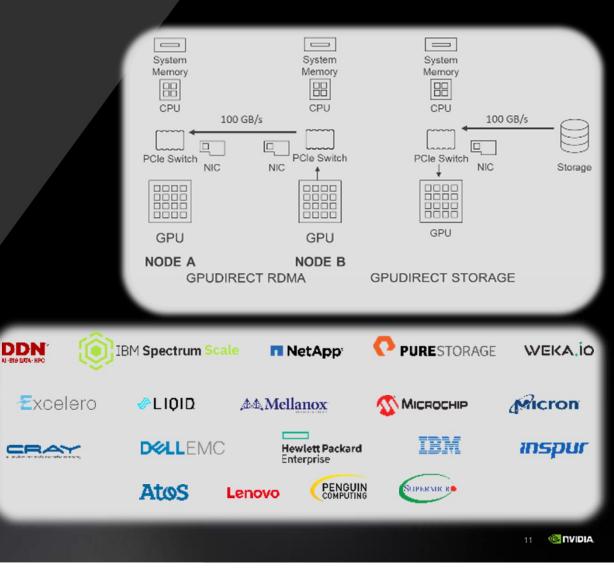
WAYS TO ACCELERATE APPLICATIONS

GPU ACCELERATED LIBRARIES

"Drop-in" Acceleration for Your Applications

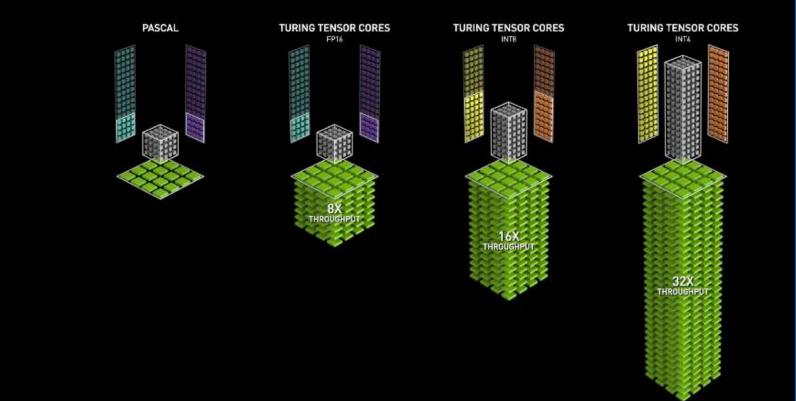
CUDA ENHANCEMENTS

- CUDA Graphs allow workflows to be submitted to GPU rather than single operations, to reduce overheads and allow more holistic optimizations.
- Hierarchical parallelism is becoming increasingly important (within and across GPUs)
 - **Cooperative Groups** allow the programmer to map application-level parallelism to the hardware in a flexible and efficient manner.
 - Multi-GPU programming techniques are becoming more sophisticated and performant.
- Programming difficulty associated with complex hardware can be alleviated with use of Unified Memory. This makes it easier for users to get started with GPUs.
- There is an increasing awareness of the fact that use of **Reduced Precision** is feasible in many cases, allowing improved performance. Hardware and software support continues to evolve.


10 💿 nvidia

NVIDIA MAGNUM IO

GPU-Accelerated I/O and Storage Software to Eliminate Data Transfer Bottlenecks for AI, Data Science and HPC Workloads

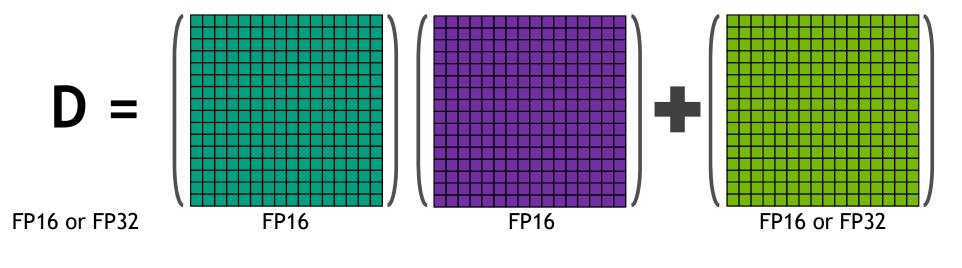

High-Bandwidth, Low-Latency Massive Storage Access with Lower CPU Utilization

Delivers up to 20x faster data throughput on multi-server, multi-GPU computing nodes

NEW TURING TENSOR CORE

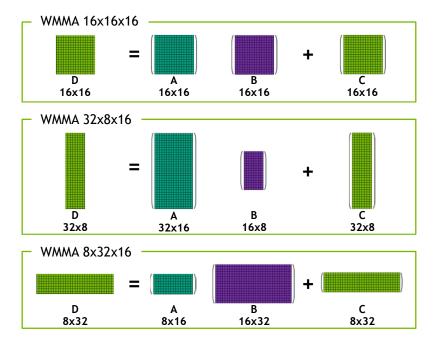
MULTI-PRECISION FOR AI TRAINING AND INFERENCE 65 TFLOPS FP16 | 130 TeraOPS INT8 | 260 TeraOPS INT4

TENSOR CORES FOR SCIENCE


Mixed-Precision Computing

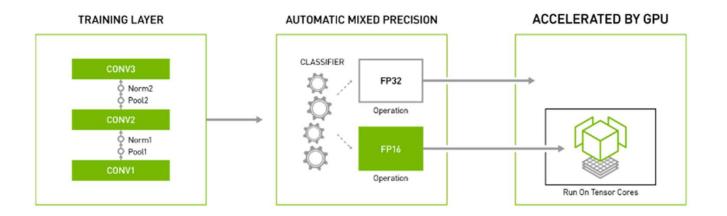
16x16x16 Warp Matrix Multiply and Accumulate (WMMA)

wmma::mma_sync(Dmat, Amat, Bmat, Cmat);



D = AB + C

TURING TENSOR CORE


New Warp Matrix Functions

- WMMA operations now include 8-bit integer
- Turing (sm_75) only
- Signed & unsigned 8-bit input
- 32-bit integer accumulator
- Match input/output dimensions with half
- 2048 ops per cycle, per SM

Easy to Use, Greater Performance and Boost in Productivity

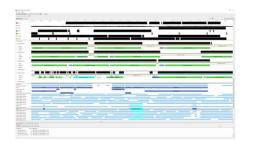
Insert ~ two lines of code to introduce Automatic Mixed-Precision and get upto 3X speedup AMP uses a graph optimization technique to determine FP16 and FP32 operations Support for TensorFlow, PyTorch and MXNet

Unleash the next generation AI performance and get faster to the market!

16 💿 NVIDIA.

D A B C

A New High Performance CUDA Library for Tensor Primitives


cuTENSOR

- Tensor Contractions
- Elementwise Operations
- Mixed Precision
- Coming Soon
 - Tensor Reductions
 - Out-of-core Contractions
 - Tensor Decompositions
- Pre-release version available developer.nvidia.com/cuTENSOR

<pre>cutensorStatus_t cutensorCreateTensorDescriptor (cutensorTensorDescriptor_t* desc,</pre>
<pre>cutensorStatus_t cutensorContraction (cuTensorHandle_t handle,</pre>
<pre>cutensorStatus_t cutensorElementwiseTrinary (cuTensorHandle_t handle, const void* alpha, const void *A, const cutensorTensorDescriptor *descA, const int modeA[], const void* beta, const void *B, const cutensorTensorDescriptor *descB, const int modeB[], const void* beta, const void *C, const cutensorTensorDescriptor *descC, const int modeC[], void *D, const cutensorTensorDescriptor *descD, const int modeD[], cutensorOperator_t opAB, cutensorOperator_t opABC, cudaDataType_t typeCompute, cudaStream_t stream);</pre>

17 🚳 nvidia.

NSIGHT PRODUCT FAMILY

* GPU Speed Of Light										
 BOL 301 	17.04 Duration (Sanoseonds)							709,054.00		
\$ SOC TEX		17.04 Elapsed Opclas							3,761,044.00	
\$ 805 12		18.08 Bi Fragmaney (Na)						3,242,387,041.11		
 BOL 78 	DL FB B7.14 Beauty Frequency (Sz)					2,499,503,548.30				
					Recommendations					
Buttleneck Sinple SPU bot	tieneck detect	ian.								Assis
					GPU Utilization					
% SH Bury										
N. Henory Duty										Current
6.8	18.0	20.0	30.0	41	S0.0 % Utilization	60.0	20.0	90.0	90.0	380.0
Compute Workload Analysis										
Essented for Elapsed					0.71 & EX Bu	7				17.84
Essocied 2po Astics					0.72 % Issue Hicks Biry					11.94
Issued Tpc Active					0.72					
Memory Warkload Analysis										
Nenosy Theoretical Crypes/	#2			72,223,20	10.070.10 h 20m B					87.24
* 11 Hit Bate					0.00 • Nas Bandvidth					97.34
12 His Asia 31.54 5 Her Diper Bury						17.90				
Scheduler Statistics										
Active Herpe Fer Scheduler					18.20 Instructions Per Active Issue dist					1.04
Eligible Warps Der Scheduler					0.25 % He Hispitche				62.75	
Issued Marys Das Debedales							17.27			
Werp Stote Statistics										
Cycles Per Issued Instruction					72.86 Avg. Ac					82.90
Cysles Pes Ineas Elon 76.02 Non. 104 1					Predicated C	Of Daranda Das	Tarp		30.47	
Cycles Per Executed Instru	ted Instruction 12.47									

Nsight Systems

System-wide application algorithm tuning

Nsight Compute

CUDA Kernel Profiling and Debugging

Nsight Graphics

Graphics Shader Profiling and Debugging

IDE Plugins

Nsight Eclipse Edition/Visual Studio (Editor, Debugger)

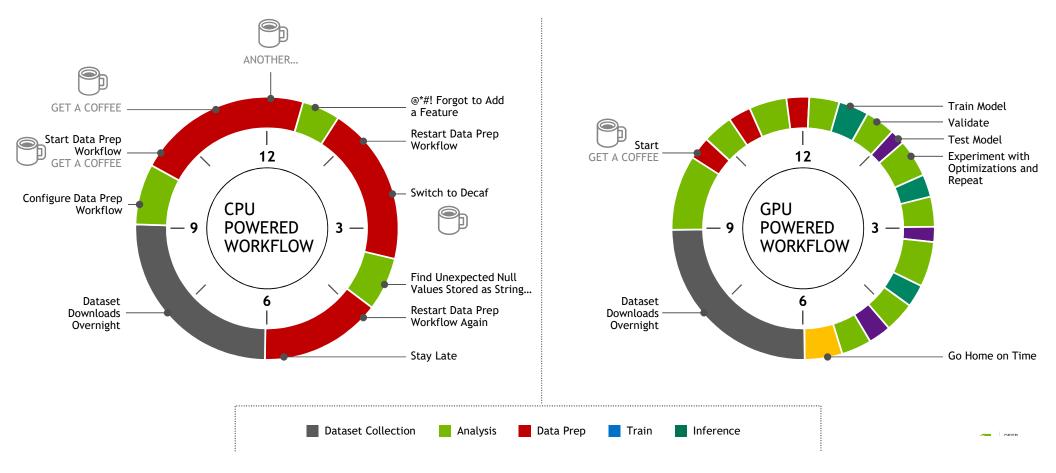
ANNOUNCING CUDA TO ARM ENERGY-EFFICIENT SUPERCOMPUTING

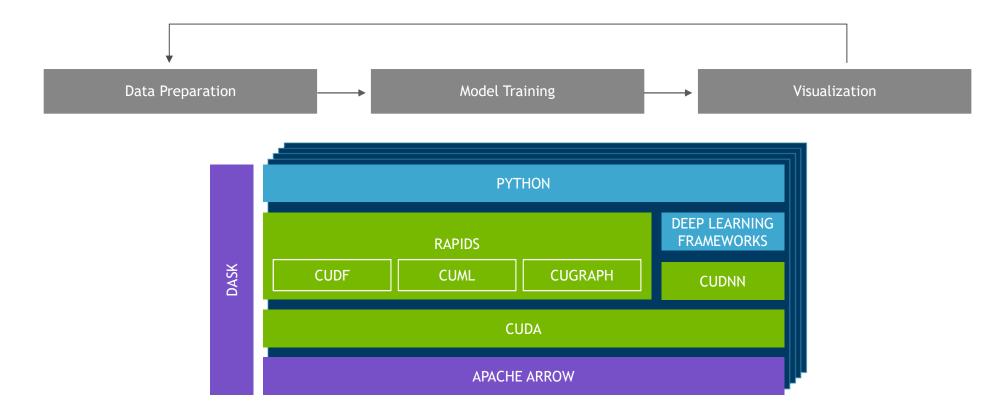
NVIDIA GPU Accelerated Computing Platform On ARM

Optimized CUDA-X HPC & AI Software Stack

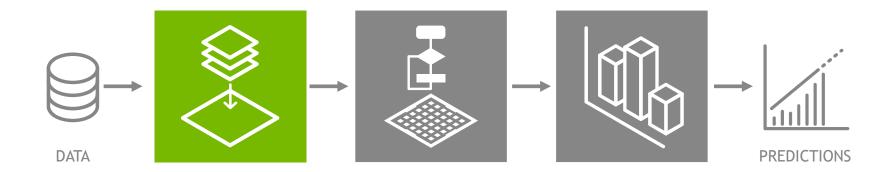
CUDA, Development Tools and Compilers

Available End of 2019


arm



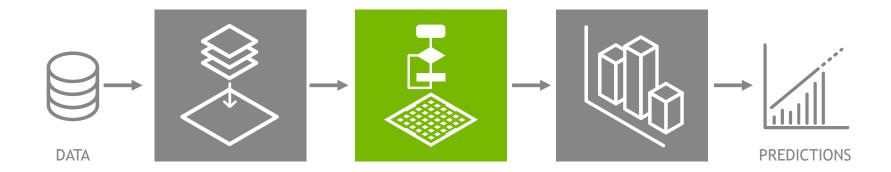
DAY IN THE LIFE OF A DATA SCIENTIST



RAPIDS – OPEN GPU DATA SCIENCE Software Stack

GPU-ACCELERATED DATA SCIENCE WORKFLOW

NVIDIA Accelerated Data Science Solution, Built on CUDA-X AI

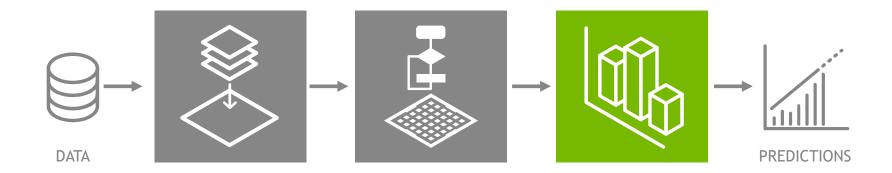


DATA PREPARATION

GPUs accelerated compute for in-memory data preparation Simplified implementation using familiar data science tools Python drop-in Pandas replacement built on CUDA C++. GPU-accelerated Spark (in development)

GPU-ACCELERATED DATA SCIENCE WORKFLOW

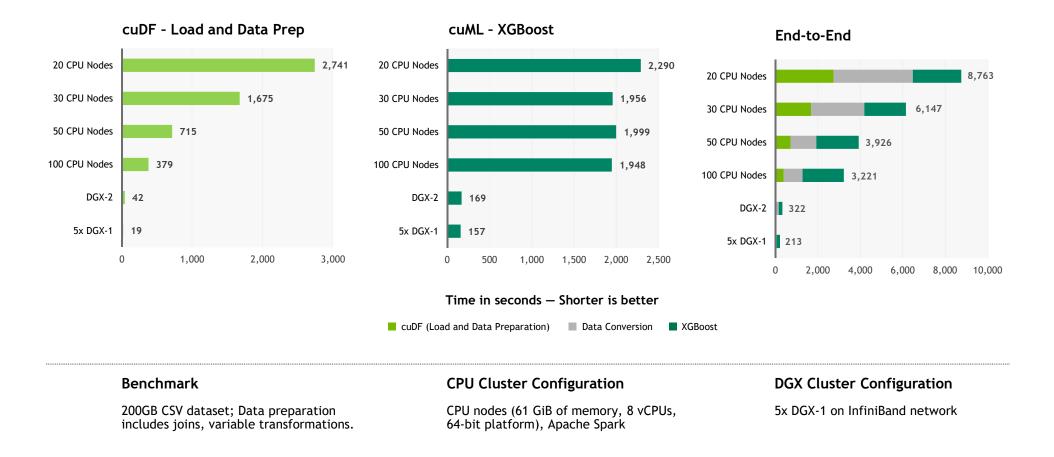
NVIDIA Accelerated Data Science Solution, Built on CUDA-X AI



MODEL TRAINING

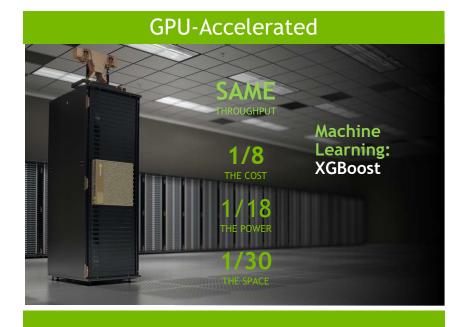
GPU-acceleration of today's most popular ML algorithms XGBoost, PCA, K-means, k-NN, DBScan, tSVD ...

GPU-ACCELERATED DATA SCIENCE WORKFLOW


NVIDIA Accelerated Data Science Solution, Built on CUDA-X AI

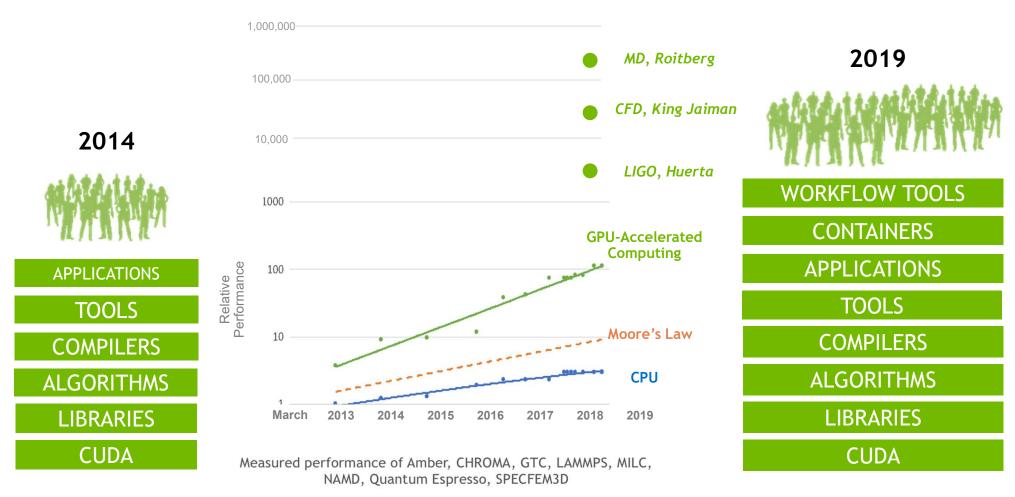
VISUALIZATION

Effortless exploration of datasets, billions of records in milliseconds Dynamic interaction with data = faster ML model development Data visualization ecosystem (Graphistry & OmniSci), integrated with RAPIDS


BENCHMARKS

DRAMATICALLY MORE FOR YOUR MONEY

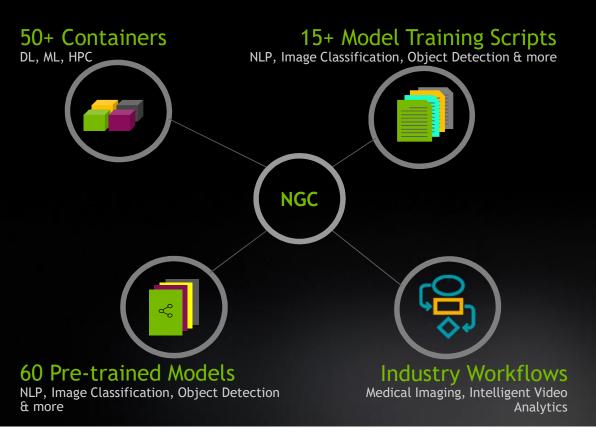
300 Self-hosted Broadwell CPU Servers 180 KWatts



1 DGX-2 10 KWatts

THE #1 DATA SCIENTIST EXCUSE FOR LEGITIMATELY SLACKING OFF: "MY MODEL'S TRAINING."

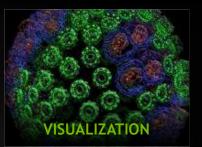
CONVERGED HPC*AI CHANGES THE GAME


CONVERGED HPC*AI TAXONOMY


How AI Algorithms are Being Applied in the HPC Workflow

NGC: GPU-OPTIMIZED SOFTWARE HUB

Simplifying DL, ML and HPC Workflows



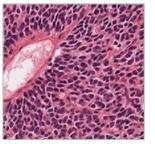
TensorFlow | PyTorch | more

RAPIDS | H2O | more

NAMD | GROMACS | more

ParaView | IndeX | more

DEEP LEARNING INSTITUTE (DLI)


Hands-on, self-paced and instructor-led training in deep learning and accelerated computing

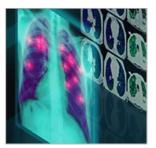
Request onsite instructor-led workshops at your organization: <u>www.nvidia.com/requestdli</u>

Take self-paced courses online: <u>www.nvidia.com/dlilabs</u>

Download the course catalog, view upcoming workshops, and learn about the University Ambassador Program: www.nvidia.com/dli

Accel. Computing Fundamentals

Genomics


Game Development

Finance

Autonomous Vehicles

Deep Learning Fundamentals

Medical Image Analysis

Digital Content Creation

31

DEVELOPER ENGAGEMENT PLATFORMS

Information, downloads, special programs, code samples, and bug submission	<u>developer.nvidia.com</u>
Containers for cloud and workstation environments	ngc.nvidia.com
Insights & help from other developers and NVIDIA technical staff	<u>devtalk.nvidia.com</u>
Technical documentation	<u>docs.nvidia.com</u>
Deep Learning Institute: workshops & self-paced courses	<u>courses.nvidia.com</u>
In depth technical how to blogs	<u>devblogs.nvidia.com</u>
Developer focused news and articles	news.developer.nvidia.com
Webinars	nvidia.com/webinar-portal
GTC on-demand content	gputechconf.com

RESOURCES AVAILABLE TO ACADEMICS TO FURTHER EDUCATION

Developer Teaching Kits: <u>https://developer.nvidia.com/teaching-kits</u> which include free access to online training for students but they have to be requested by a lecturer/professor.

Academic Workshops:

The NVIDIA website lists free academic workshops that our Ambassadors are giving around the world that you can go and attend: <u>www.nvidia.co.uk/dli</u>

Bootcamps:

~ 2 day tailored training events, typically for a target group

Hackathons:

In-depth 5-day events with access to NV *devtech* team – next UK: Sheffield Jul 27- Aug 2nd 2020

Thank you

Paul Graham pgraham@nvidia.com