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Lattice QCD

QCD and confinement

I Quantum Chromo Dynamics (QCD) theory of the strong interaction
I strong coupling αs

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  
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[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]

I quarks and gluons confined to
bound states (hadrons)

each additional gluon line or quark-antiquark pair comes with αs
(αs ∼ O(1) at small energies)

→ Monte Carlo sampling
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Lattice QCD

QCD on the lattice

I Wick rotation (t → −ix0) to Euclidean space-time
I Discretize space-time by a hypercubic lattice Λ
I Quantize QCD using Euclidean path integrals

〈A〉 =
1
Z

∫
D[Ψ,Ψ]D[U] e−SE [Ψ,Ψ,U] A(U,Ψ, Ψ̄)

−→ can be split into fermionic and gluonic part

a

Ψ(x) Ψ(x + aµ̂)

Uµ(x)

I Calculate gluonic expectation values using Monte Carlo techniques:

〈〈A〉F 〉G =
∫
D[U] 〈A〉F P(U) ≈

1
Ncfg

Ncfg∑
n=1
〈A〉F

average over gluonic gauge configurations U distributed according to

P(U) =
1
Z

(det D)Nf e−SG [U]

I extrapolate to the continuum (a → 0) and infinite volume (V →∞)
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Lattice QCD

QCD on the lattice

I successfully used to calculate hadronic observables, e.g. hadron spectrum

[S. Dürr et al, Science 322 (2008) 1224-1227] [Sz. Borsanyi et al, Science 347 (2015) 1452-1455]

I other quantities, e.g.
hadronic form factors, decay amplitudes, hadronic contributions to g − 2,
PDFs, . . .
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Lattice QCD

Computational Challenges

I two energy scales in the problem, box size L, lattice spacing a

O(1/L)� E � O(1/a)
I typical size of a lattice

N = L3 × T = 643 × 128 ∼ O(107 − 108)

I Dirac-operator D: matrix of size (12 · N)× (12 · N)

I anatomy of a lattice calclation
I generate gauge configurations → need determinant det D
I “measurements”: calculate quark propagators→ need the inverse D−1

→ solve the Dirac equation using appropriate sources η

Dφ = η

I size of lattices restricted by available computer power
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Lattice QCD

Parallelisation of the Problem

I split lattice into smaller local lattices

I need good scalabilty up to large number of compute nodes
→ balance between
I time for computation on local lattice
I time for communication
I time for loading data from memory to cache
I time for using data from cache
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Lattice QCD

Parallelisation of the Problem

I split lattice into smaller local lattices

I need good scalabilty up to large number of compute nodes

I Dirac operator is a sparse matrix
I mostly nearest neighbour communication between processes
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Hardware for Lattice QCD

Supercomputers for Lattice QCD

I torus interconnect

I “tradition” of custom designed supercomputers tailored to lattice
calculations, e.g.
I QCDSP (“QCD on digital Signal Processors”), designed in the 90’s
→ 4-dimensional torus

I QCDOC (“QCD On a Chip”)
→ 6-dimensional torus
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Hardware for Lattice QCD

QCDOC (“QCD On a Chip”)

I devloped by IBM, University of Edinburgh, Columbia University and
RIKEN-BNL see, e.g., [D. Chen et al, Nucl.Phys.Proc.Suppl. 94 (2001) 825-832], [P. Boyle et al,
Nucl.Phys.Proc.Suppl. 129 (2004) 838-843]

I application-specific integrated
circuit

I custom-designed communications
hardware

I ≈ 1 GFlop/s per node
I sustained performance of ≈ 50%

I QCDOC in Edinburgh
I installed in 2004
I running until 2011
I 12288 processing nodes
→ ≈ 10 TFLOPS/s peak
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Hardware for Lattice QCD

IBM BlueGene/Q

I three generations of supercomputers: BG/L, BG/P, BG/Q
I Top 500 June 2012 [https://www.top500.org/lists/2012/06/]: Nr 1,3,7,8 BG/Q

I 18 cores per chip

I L1 (16 + 16 KB/core) and L2
(32 MB/node) cache

I L1p prefetch engine designed by
Edinburgh and Columbia

I interconnect: high-bandwidth 5d
torus network

[P. Boyle, PoS LATTICE2012 (2012) 020]

I fixed local volume 84 × 16

GFlops/s L1 GB/s L2 GB/s DDR GB/s Torus GB/s
204.8 820 536 42.7 40

[P. Boyle, PoS LATTICE2012 (2012) 020]
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Hardware for Lattice QCD

IBM BlueGene/Q in Edinburgh

I BlueGene/Q in Edinburgh
I part of the DiRAC

supercomputing facility
I hosted by Edinburgh Parallel

Computing Centre (epcc)
I 6144-node (6 racks)

BlueGene/Q with 1.26Pflop/s
peak performance
(Nr. 20 in Top500 List, June
2012)

I running from 2012 until January
2018

[P. Boyle, PoS LATTICE2012 (2012) 020]
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Hardware for Lattice QCD

Current Supercomputers

I performance and communication bandwidth for recent supercomputers

[P. Boyle, PoS LATTICE2016 (2016) 013]

I computational intensity for lattice algorithms typically ∼ 1 Byte/Flop
I single node performance increasing much faster than interconnect bandwidth
→ affects scaling of lattice calculations
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Hardware for Lattice QCD

GPU

I typically many processing units
per GPU
(picture of NVIDIA Volta V100
die on the right)

I GPU in supercomputers, e.g.
I Summit (Oak Ridge National

Laboratory):
I Nr 1 in Top500 (200 PFlops)
I 4608 compute nodes, each with

• two IBM POWER9 CPUs
• six Nvidia Volta GV100 GPUs
• connected by NVLink

I Dual-rail Mellanox EDR
Infiniband

[https://images.anandtech.com/doci/11367/voltablockdiagram.png

[talk by P. Boyle, USQCD All-Hands Collaboration Meeting 2019]
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Hardware for Lattice QCD

Tesseract

I Extreme scaling service of DiRAC,
hosted by EPCC in Edinburgh

I 1468 compute nodes, each with two
Intel Xeon Silver 4116 processors

I Omnipath interconnect

[talk by P. Boyle, USQCD All-Hands Collaboration Meeting 2019]
picture from https://www.epcc.ed.ac.uk/facilities/dirac

I new: 8 GPU compute nodes:
two Intel Xeon and four NVidia V100 (Volta) GPU accelerators
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Software for Lattice QCD

Software for Lattice QCD

I exploit all forms of parallelism
• multi processing

I communication between different nodes
• multi threading

I execute several instructions simultaneously
I parallelisation within a node

• single instruction multiple data (SIMD)
I simultaneously perform the same operation on a vector of data
I parallelisation within a core

I Software that is aware of the hardware, e.g.
I network geometry
I vector instructions
I memory hierarchy, cache reuse

I reduce message size in communication, e.g.
I communication avoiding algorithms
I reduced data precision
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Software for Lattice QCD

Single Instruction Multiple Data (SIMD)

I SIMD as vector instructions
a0 a1 a2 a3

+

b0 b1 b2 b3

=

a0 +b0 a1 +b1 a2 +b2 a3 +b3

I various instruction sets, e.g.
Intel SSE (128), SSE2 (128)
Intel AVX (256), AVX2 (256),

AVX512 (512)
IBM PowerPC QPX (256)
. . .

I SIMD for Lattice
I data layout: SIMD vector

=
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Software for Lattice QCD

GRID Software package

I Free (GPLv2) data parallel C++11 QCD library
I P. Boyle et al, https://github.com/paboyle/Grid

[P. Boyle et al, PoS LATTICE2015 (2016) 023]

I high level data parallel approach: MPI, OpenMP and
I various vector instructions, SSE, AVX, AVX2, AVX512, QPX, NEONv8
I adjust data layout automatically to vector length of given architecture
I high portability between many architectures
I aims to performance on upcoming/planed exascale machines

I New: GPU-Port

I various different solvers and lattice actions
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Outlook

Getting ready for Exascale

I Top500 List, November 2019 https://top500.org/lists/2019/11/

I Exascale will come soon
I Aurora at Argonne National Laboratory, US

[https://www.intel.co.uk/content/www/uk/en/highperformancecomputing/supercomputing/exascalecomputing.html

I Frontier at Oak Ridge National Laboratory, US
[https://www.olcf.ornl.gov/2018/02/13/frontier-olcfs-exascale-future/

I Tianhe-3, China?
https://www.top500.org/news/china-reveals-third-exascale-prototype/
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Outlook

Summary

I Lattice QCD is a successful tool

I computationally very expensive
• supercomputers tailored for lattice calculations
• need good scalabilty
• need highly optimised software

I Exascale will come soon
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