Computational Challenges in Lattice QCD

Vera Gülpers

School of Physics and Astronomy University of Edinburgh

February 18, 2020

European Research Council

Established by the European Commission

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- ▶ strong coupling α_s

[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- strong coupling α_s

[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- strong coupling α_s

[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- strong coupling α_s

[Particle Data Group (PDG), Phys. Rev. D 98, 030001 (2018)]

- Quantum Chromo Dynamics (QCD) theory of the strong interaction
- strong coupling α_s

- quarks and gluons confined to bound states (hadrons)
- each additional gluon line or quark-antiquark pair comes with α_s (α_s ~ O(1) at small energies)
 - \rightarrow Monte Carlo sampling

Lattice QCD

QCD on the lattice

- Wick rotation $(t
 ightarrow -ix_0)$ to Euclidean space-time
- Discretize space-time by a hypercubic lattice Λ
- Quantize QCD using Euclidean path integrals

$$\langle A \rangle = \frac{1}{Z} \int \mathcal{D}[\Psi, \overline{\Psi}] \mathcal{D}[U] e^{-S_{\mathcal{E}}[\Psi, \overline{\Psi}, U]} A(U, \Psi, \overline{\Psi}) \quad \bullet \quad \bullet \quad \bullet$$

 \longrightarrow can be split into fermionic and gluonic part

Calculate gluonic expectation values using Monte Carlo techniques:

$$\langle \langle \mathbf{A} \rangle_F \rangle_G = \int \mathcal{D}[\mathbf{U}] \langle \mathbf{A} \rangle_F \mathbf{P}(\mathbf{U}) \approx \frac{1}{N_{cfg}} \sum_{n=1}^{N_{cfg}} \langle \mathbf{A} \rangle_F$$

average over gluonic gauge configurations \boldsymbol{U} distributed according to

$$P(U) = \frac{1}{Z} \left(\det D \right)^{N_f} e^{-S_G[U]}$$

ullet extrapolate to the continuum (a
ightarrow 0) and infinite volume $(m{
u}
ightarrow\infty)$

Lattice QCD

QCD on the lattice

 other quantities, e.g. hadronic form factors, decay amplitudes, hadronic contributions to g - 2, PDFs, ...

Computational Challenges

 \blacktriangleright two energy scales in the problem, box size ${\it L}$, lattice spacing ${\it a}$

 $\mathcal{O}(1/L) \ll E \ll \mathcal{O}(1/a)$

typical size of a lattice

$$N = L^3 \times T = 64^3 \times 128 \sim \mathcal{O}(10^7 - 10^8)$$

▶ Dirac-operator **D**: matrix of size $(12 \cdot N) \times (12 \cdot N)$

- anatomy of a lattice calclation
 - ▶ generate gauge configurations \rightarrow need determinant det D
 - "measurements": calculate quark propagators \rightarrow need the inverse D^{-1} \rightarrow solve the Dirac equation using appropriate sources η

$$D\phi = \eta$$

size of lattices restricted by available computer power

Parallelisation of the Problem

split lattice into smaller local lattices

need good scalabilty up to large number of compute nodes
 → balance between

- time for computation on local lattice
- time for communication
- time for loading data from memory to cache
- time for using data from cache

Parallelisation of the Problem

split lattice into smaller local lattices

need good scalabilty up to large number of compute nodes

Dirac operator is a sparse matrix

mostly nearest neighbour communication between processes

Supercomputers for Lattice QCD

torus interconnect

- "tradition" of custom designed supercomputers tailored to lattice calculations, e.g.
 - \blacktriangleright QCDSP ("QCD on digital Signal Processors"), designed in the 90's \rightarrow 4-dimensional torus
 - QCDOC ("QCD On a Chip")
 - \rightarrow 6-dimensional torus

QCDOC ("QCD On a Chip")

- devloped by IBM, University of Edinburgh, Columbia University and RIKEN-BNL see, e.g., [D. Chen et al, Nucl.Phys.Proc.Suppl. 94 (2001) 825-832], [P. Boyle et al, Nucl.Phys.Proc.Suppl. 129 (2004) 838-843]
- application-specific integrated circuit
- custom-designed communications hardware
- $\blacktrianglerightpprox 1$ GFlop/s per node
- ▶ sustained performance of $\approx 50\%$
- QCDOC in Edinburgh
 - installed in 2004
 - running until 2011
 - 12288 processing nodes $\rightarrow \approx 10$ TFLOPS/s peak

IBM BlueGene/Q

- ▶ three generations of supercomputers: BG/L, BG/P, BG/Q
- Top 500 June 2012 [https://www.top500.org/lists/2012/06/]: Nr 1,3,7,8 BG/Q
- 18 cores per chip
- L1 (16 + 16 KB/core) and L2 (32 MB/node) cache
- L1p prefetch engine designed by Edinburgh and Columbia
- interconnect: high-bandwidth 5d torus network

Code developed by Peter Boyle at the STFC funded DiRAC facility at Edinburgh

[P. Boyle, PoS LATTICE2012 (2012) 020]

▶ fixed local volume $8^4 \times 16$

GFlops/s	L1 GB/s	L2 GB/s	DDR GB/s	Torus GB/s				
204.8	820	536	42.7	40				
[P. Boyle, PoS LATTICE2012 (2012) 020]								

Vera Gülpers (University of Edinburgh)

IBM BlueGene/Q in Edinburgh

- BlueGene/Q in Edinburgh
- part of the DiRAC supercomputing facility
- hosted by Edinburgh Parallel Computing Centre (epcc)
- 6144-node (6 racks) BlueGene/Q with 1.26Pflop/s peak performance (Nr. 20 in Top500 List, June 2012)
- running from 2012 until January 2018

[P. Boyle, PoS LATTICE2012 (2012) 020]

Current Supercomputers

- \blacktriangleright computational intensity for lattice algorithms typically $\sim 1~$ Byte/Flop
- ► single node performance increasing much faster than interconnect bandwidth → affects scaling of lattice calculations

GPU

- typically many processing units per GPU (picture of NVIDIA Volta V100 die on the right)
- GPU in supercomputers, e.g.
- Summit (Oak Ridge National Laboratory):
 - Nr 1 in Top500 (200 PFlops)
 - 4608 compute nodes, each with
 - two IBM POWER9 CPUs
 - six Nvidia Volta GV100 GPUs
 - connected by NVLink
 - Dual-rail Mellanox EDR Infiniband

[https://images.anandtech.com/doci/11367/voltablockdiagram.png

[talk by P. Boyle, USQCD All-Hands Collaboration Meeting 2019]

Tesseract

- Extreme scaling service of DiRAC, hosted by EPCC in Edinburgh
- 1468 compute nodes, each with two Intel Xeon Silver 4116 processors
- Omnipath interconnect

picture from https://www.epcc.ed.ac.uk/facilities/dirac

new: 8 GPU compute nodes:
 two Intel Xeon and four NVidia V100 (Volta) GPU accelerators

Software for Lattice QCD

- exploit all forms of parallelism
 - multi processing
 - communication between different nodes
 - multi threading
 - execute several instructions simultaneously
 - parallelisation within a node
 - single instruction multiple data (SIMD)
 - simultaneously perform the same operation on a vector of data
 - parallelisation within a core
- Software that is aware of the hardware, e.g.
 - network geometry
 - vector instructions
 - memory hierarchy, cache reuse
- reduce message size in communication, e.g.
 - communication avoiding algorithms
 - reduced data precision

Single Instruction Multiple Data (SIMD)

SIMD as vector instructions

various instruction sets, e.g.

Intel Intel IBM PowerPC

. . .

SSE (128), SSE2 (128) AVX (256), AVX2 (256), AVX512 (512) QPX (256)

- SIMD for Lattice
- data layout: SIMD vector

GRID Software package

- ▶ Free (GPLv2) data parallel C++11 QCD library
- P. Boyle et al, https://github.com/paboyle/Grid [P. Boyle et al, PoS LATTICE2015 (2016) 023]

- ▶ high level data parallel approach: MPI, OpenMP and
- various vector instructions, SSE, AVX, AVX2, AVX512, QPX, NEONv8
- adjust data layout automatically to vector length of given architecture
- high portability between many architectures
- aims to performance on upcoming/planed exascale machines
- New: GPU-Port
- various different solvers and lattice actions

Outlook

Getting ready for Exascale

Top500 List, November 2019

https://top500.org/lists/2019/11/

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Summit - IBM Power System AC922, IBM POWERP 22C 3.070Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
2	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DG/NNSA/LINL United States	1,572,480	94,640.0	125,712.0	7,438
3	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371

Exascale will come soon

- Aurora at Argonne National Laboratory, US [https://www.intel.co.uk/content/www/uk/en/highperformancecomputing/supercomputing/exascalecomputing.html
- Frontier at Oak Ridge National Laboratory, US [https://www.olcf.ornl.gov/2018/02/13/frontier-olcfs-exascale-future/
- Tianhe-3, China? https://www.top500.org/news/china-reveals-third-exascale-prototype/

Summary

- ► Lattice QCD is a successful tool
- computationally very expensive
 - supercomputers tailored for lattice calculations
 - need good scalabilty
 - need highly optimised software

Exascale will come soon

Thank you

VG has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757646.