arm

Arm as a Viable Architecture for HPC and Al

EPCC Workshop on Efficient Computing for High Energy Physics

Dr. Nathan John Sircombe nathan.sircombe@arm.com

18th February 2020

of the world's population uses Arm technology

Not just mobile phones!

History of Arm in HPC

A Busy Decade

2011 Calxada

• 32-bit ARrmv7-A – Cortex A9

2011-2015 Mont-Blanc 1

- 32-bit Armv7-A
- Cortex A15
- First Arm HPC system

2014 AMD Opteron A1100

- 64-bit Armv8-A
- Cortex A57
- 4-8 Cores

2015 Cavium ThunderX

- 64-bit Armv8-A
- 48 Cores

2017 (Cavium) Marvell ThunderX 2

- 64-bit Armv8-A
- 32 Cores

2019 Fujitsu A64FX

- First Arm chip with SVE vectorisation
- 48 Cores

Variation in the Processor Market

Marvell ThunderX2 CN99XX

M A R V E L L®

- Marvell's next generation 64-bit Arm processor
 - Taken from Broadcom Vulcan
- 32 cores @ 2.2 GHz (other SKUs available)
 - 4 Way SMT (up to 256 threads / node)
 - Fully out of order execution
 - 8 DDR4 Memory channels (~250 GB/s Dual socket)
 - Vs 6 on Skylake
- Available in dual SoC configurations
 - CCPI2 interconnect
 - 180-200w / socket
- Vector unit: 128-bit NEON

Fujitsu A64FX

- Chip designed for RIKEN Fugaku (POST-K)
 - Based on Arm ISA technology
- 48 core 64-bit Armv8 processor
 - + 4 dedicated OS cores
- With SVE vectorisation
 - 512 bit vector length
- High performance
 - >2.7 TFLOPs
 - Low power : 15GF/W (dgemm)
- 32 GB HBM2
 - No DDR
 - 1 TB/s bandwidth
- TOFU 3 interconnect

	A64FX (Post-K)	SPARC64 XIfx (PRIMEHPC FX100)
ISA (Base)	Armv8.2-A	SPARC-V9
ISA (Extension)	SVE	HPC-ACE2
Process Node	7nm	20nm
Peak Performance	>2.7TFLOPS	1.1TFLOPS
SIMD	512-bit	256-bit
# of Cores	48+4	32+2
Memory	HBM2	НМС
Memory Peak B/W	1024GB/s	240GB/s x2 (in/out)

Deployments

- More Arm based CPUs are being adopted
 - Lots of large-scale deployments
- Different OEMs
 - Cray, HPE, Atos-Bull, Fujitsu, Huawei, E4
- EU Deployments
 - Isambard: Cray 10k TX2 cores
 - Catalyst 3 systems: HPE 4k TX2 core
 - Future Isambard 2: Cray A64FX
 - Future Deucalion: Cray A64FX

>5k ThunderX2 CPUs

2k Kunpeng 920 CPUs + 8k Al accelerators

150k+ Fujitsu A64FX CPUs

Deployments

Hewlett Packard Enterprise

Catalyst

Fulhame Catalyst system at EPCC

- Deployments to accelerate the growth of the Arm **HPC** ecosystem
- Each machine has:
 - 64 HPE Apollo 70 nodes
 - Dual 32-core Marvell ThunderX2 nodes
 - 4096 cores per system
 - 256GB of memory / node
 - Mellanox InfiniBand interconnects
- OS: SUSE Linux Enterprise Server for HPC
- Signup for access:
 - https://safe.epcc.ed.ac.uk/safadmin/
 - Email olly.perks@arm.com for more information

Bristol: VASP, CASTEP, Gromacs, CP2K, Unified Model, NAMD, Oasis, NEMO, OpenIFS, CASINO, LAMMPS

EPCC: WRF, OpenFOAM, Two PhD candidates

Leicester: Data-intensive apps, genomics, MOAB Torque, DiRAC collaboration

A64FX Now in Top500 - #159

System	Year Vendor Core	Rmax s (GFlop/s)	Rpeak (GFlop/s)
A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D	2019 36,8	34 1,999,500	2,359,296

Green500 - #1

Rank	T0P500 Rank	System	Cores	Rmax (TFlop/s)		Efficiency (GFlops/watts)
1	159	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
			4 -	211/		

- Prototype of Fugaku system
 - Fraction of the size of the final deployment
- Using Fujitsu software stack
 - Compiler and MPI

The Cloud

Open access to server class Arm

First Arm Cloud Instances

arm

With 96 physical Arm cores, this server is anything but a lightweight - and it comes with 128 GB of RAM for just \$0.50/hr. Nice!

The Cloud

Open access to server class Arm

VERNE GLOBAL

ın partı

With 96 physical Arm cores, this server is anything but a lightweight - and it comes with 128 GB of RAM for just \$0.50/hr. Nice!

Software Ecosystem

Not Just Hardware

- Comprehensive software ecosystem
 - From Operating systems to Applications
 - Schedulers to file systems
- Everything you need to run an HPC service
- Vendor and OSS solutions

Functional Areas	Components include
Base OS	Centos, RHEL, Ubuntu, SUSE, SLES
Administrative Tools	Conman, Ganglia, Lmod, LosF, Nagios, pdsh, pdsh-mod-slurm, prun, EasyBuild, ClusterShell, mrsh, Genders, Shine, test-suite
Provisioning	Warewulf
Resource Mgmt.	SLURM, PBS Pro, Munge
I/O Services	Lustre client + server, NFS
Numerical/Scientific Libraries	Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, SuperLU_Dist, Mumps, OpenBLAS, Scalapack, SLEPc, PLASMA, ptScotch
I/O Libraries	HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios
Compiler Families	GNU (gcc, g++, gfortran), LLVM, Cray, Fujitsu, Arm
MPI Families	OpenMPI, MPICH, MVAPICH2, Cray, HPE
Development Tools	Autotools (autoconf, automake, libtool), Cmake, Valgrind,R, SciPy/NumPy, hwloc
Performance Tools	PAPI, IMB, pdtoolkit, TAU, Scalasca, Score-P, SIONLib

arm Allinea Studio

Fortran Compiler

- Fortran 2003 support
- Partial Fortran 2008 support
- OpenMP 3.1
- Directives to support explicit vectorization control

SVE

C/C++ Compiler

- C++ 14 support
- OpenMP 4.5 without offloading
- SVE

Performance Libraries

- Optimized math libraries
- BLAS, LAPACK and FFT
- Threaded parallelism with OpenMP
- Optimized maths intrinsics

Forge

- Profile, Tune and Debug
- Scalable debugging with DDT
- Parallel Profiling with MAP

Performance Reports

- Analyze your application
- Memory, MPI, Threads, I/O, CPU metrics

Tuned by Arm for server-class Arm-based platforms

arm COMPILER

Commercial C/C++/Fortran compiler with best-in-class performance

Compilers tuned for Scientific Computing and HPC

Tuned for Scientific Computing, HPC and Enterprise workloads

- Processor-specific optimizations for various server-class Arm-based platforms
- Optimal shared-memory parallelism using latest Arm-optimized OpenMP runtime

Linux user-space compiler with latest features

- C++ 14 and Fortran 2003 language support with OpenMP 4.5*
- Support for Armv8-A and SVE architecture extension
- Based on LLVM and Flang, leading open-source compiler projects

Commercially supported by Arm

 Available for a wide range of Arm-based platforms running leading Linux distributions – RedHat, SUSE and Ubuntu

arm Performance Libraries

- Commercial 64-bit ArmV8-A math Libraries
 - Commonly used low-level maths routines BLAS, LAPACK and FFT
 - Optimised maths intrinsics
 - Validated with NAG's test suite, a de facto standard
- Best-in-class performance with commercial support
 - Tuned by Arm for specific cores like TX2
 - Maintained and supported by Arm for wide range of Arm-based SoCs
- Silicon partners can provide tuned micro kernels for their SoCs
 - Partners can contribute directly through open source routes
 - Parallel tuning within our library increases overall application performance

Applications

Applications & frameworks

abinit, psdns, arbor, qmcpack, castep, quantumespresso, flecsale, raja, gromacs, sparta, kokkos, specfem3d, tensorflow, geant4, lammps, sw4, pytorch, mxnet, nalu, milc, thornado, namd. vasp, nwchem, openfoam, wrf...

Benchmarks

amg, nsimd,carmpl, nsimd-sve, clom, npb, elefunt, polybench. epcc_c, stream, epcc_f, tsvc, umt, graph500, xsbench, hpcg, hpl hydrobench, ncar...

Mini apps

branson, pennant. cloverleaf, pf3dkernels, cloverleaf3d, quicksilver, e3smkernels, snap, kripke, snbone, lulesh.f tealeaf, miniamr, minife, minighost, nekbone. neutral...

Community resources

https://gitlab.com/arm-hpc/packages/wiki/

Application Performance

Early Results from Astra

System has been online for around two weeks, incredible team working round the clock, already running full application ports and many of our key frameworks

Baseline: Trinity ASC Platform (Current Production (LANL/SNL)), dual-socket Haswell

EM (EMPIRE) Code on Astra

Single node performance results

UM scalability, up to 10,240 cores

UM vn10.4 N768-noio 100% 100% 80% 72% 62% 55% 40% 0% 140 160 120 Nodes

NEMO scalability, up to 8,192 cores

http://gw4.ac.uk/isambard/

http://gw4.ac.uk/isambard/

OpenSBLI scalability, up to 10,240 cores

GROMACS scalability, up to 8,192 cores

Arm Performance Libraries – Leading BLAS performance

Arm Compiler for Linux 20.0 vs latest OpenBLAS vs latest BLIS

- High serial performance for BLAS level 3 routines, such as **GEMMs** also have classleading parallel performance
- Shown is DGEMM on square matrices using 56 threads on a ThunderX2

ArmPL 20.0 FFT vs FFTW 3.3.8

Architecture Adoption: Community Engagement

Training Events and Hackathons

- Arm as a viable alternative to X86
- Needs to be easy to port to
 - Working codes and performant codes
- Team of field application engineers
 - Work with code teams
 - Educate, port and optimize
- Successful previous events
- Next event:
 - Arm HPC User Group
 - https://a-hug.org/
 - SVE Hackathon: 11th March
 - Meeting: 12th-13th March

Galaxy simulation in SWIFTsim computed on Arm Catalyst during DiRAC Hackathon

Machine Learning and Artificial Intelligence

Machine Learning and Artificial Intelligence

ML Frameworks on server-class Aarch64 platforms

- On-CPU server-scale ML workloads
- Leading frameworks and dependencies built on AArch64
 - TensorFlow: https://gitlab.com/arm-hpc/packages/-/wikis/packages/tensorflow
 - PyTorch: https://gitlab.com/arm-hpc/packages/-/wikis/packages/pytorch
 - MXNET: https://gitlab.com/arm-hpc/packages/-/wikis/packages/mxnet
- Docker tools for TensorFlow on GitHub
 - part of ARM-software/Tool-Solutions
 - https://github.com/ARM-software/Tool-Solutions/tree/master/docker/tensorflow-aarch64
 - Compiler: GCC 9.2
 - Maths libraries: Arm Optimized Routines and OpenBLAS 0.3.6
 - Python3 environment built from CPython 3.7 and containing:
 - NumPy 1.17.1
 - TensorFlow 1.15
 - TensorFlow Benchmarks

TensorFlow and maths libraries on AArch64

ML Frameworks on AArch64

- Focus has been on TensorFlow, and the maths libraries
 - Inference
 - Including ArmNN + ArmCL
 - Many-core systems
 - ArmCL note developed for > 8 cores, and doesn't scale well as-is
 - Significant GEMM, and vector maths, work
- Scope for improvements to performance and parallelism
- We're actively working on:
 - Optimized kernels
 - Improved scaling on many-core SoCs
 - Better support for AArch64 Neon and SVE
 - Leveraging Arm Performance Libraries for HPC-ML workloads
 - Enablement of AArch64 support in key libraries
 - Provision of OS implementations of key kernels

ML in HPC

- Catalyst cluster located in Leicester, 2 x
 Cavium ThunderX2(R) CPU CN9980 v2.1
 @ 2.20GHz per node
- Distributed training benchmarks run at scale on Catalyst system
 - Cosmoflow
 - ResNet101
 - Climate Segmentation
 - https://github.com/sparticlesteve/climate-segbenchmark
 - DeepLabv3+NN, training via Synchronous SGD
- Work supported by DiRAC Post-Doctoral industrial placement

Climate Segmentation scaling on Catalyst

Going Forward

The Future of Arm in HPC

What's next?

Processors

- By more vendors
 - Marvell, Ampere, Amazon, HiSilicon, Fujitsu
- Targeting different market segments
- All built on the Arm ecosystem
- Supported by the tools

Deployments

- Large scale and small scale deployments
- Increased exposure to the architecture
- More applications and libraries ported to Arm
 - Including ISVs
- Growing community

Commitment from Arm

- Neoverse IP roadmap for silicon vendors
- Investment in software ecosystem
 - E.g. Flang / F18
- Support for customers
 - Applications
 - Software
 - Performance

Arm HPC Ecosystem

Get involved

www.arm.com/hpc

- News, events, blogs, webinars, etc.
- Quick-start guides for tools

www.gitlab.com/arm-hpc/packages/wikis

- Community collaboration site
- Guides for porting HPC applications

www.a-hug.org

Arm HPC Users Group (AHUG)

⁺The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks