

Next generation compute efficiency with Xilinx FPGAs and the new Versal ACAP

Cathal McCabe
Xilinx University Program, Xilinx Ireland
18 February 2020

Overview

- Requirements for next generation compute systems
- ▶ The technology conundrum
- FPGA technology evolution
- Current and next generation Xilinx technologies

What are your requirements for next generation HEP systems?

Performance

Data rates

Power

Cost

Compute density

Machine Learning

Adaptability

Cloud scalability

The Technology Conundrum .. And the Need for a New Compute Paradigm

*John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018 © Copyright 2020 Xilinx

FPGA scaling

FPGA scaling - URAM example

FPGA scaling – transceivers example

Device Category

Xilinx technologies

FAST

Built for high throughput, ultra-low latency Accelerate compute, networking, storage

ADAPTABLE

Deploy optimized domain-specific architectures

Adapt to changing algorithms

ACCESSIBLE

Deploy in the cloud or on-premises Rich set of accelerated Applications

Data Center and Al Accelerator Cards

Database Search & Analytics

Financial Computing

20X
Machine
Learning

12X
Video
Processing

HPC &
Life Sciences

Unified Software Platform

- · Unified methodology edge to cloud
- Focus on platform and acceleration
- Available for free

^{*}Open source Xilinx Runtime library (XRT), Accelerated libraries, Al Models

Platform Transformation

Vitis: Unified Software Platform

Build: Extensive, Open Source Libraries

Domain-Specific Libraries

400+ functions across multiple libraries for performance-optimized out-of-the-box acceleration

Vitis AI: Deep Learning Acceleration

Example performance

Computational Fluid Dynamics

ALVEO Accelerated CFD Kernels

byte LAKE

Faster Time to insight, Fewer Nodes

- 4x Faster simulation time
- 80% lower energy consumption
- 6x better performance per Watt

Computational Storage

Line-rate Data Compression Acceleration

Compression, decompression, erasure coding, encryption all accelerated on one platform

Computational Storage

Line-rate Data Compression Acceleration

20x Throughput Per Node

2x Less Nodes

40% Lower Total Cost

Alveo U50 Acceleration

2x Dual CPU Servers
192TB SSDs, 1GB/sec Per Node
Compression Throughput

Alveo Server with 2x Alveo U50 96TB SSDs (192TB effective), 20GB/sec Per Node Compression Throughput

Advantages in Machine Learning Inference

INCREASE REAL-TIME MACHINE LEARNING* THROUGHPUT BY 20X

^{*} Source Accelerating DNNs with Xilinx Alveo Accelerator Cards White Paper

Advantages in Latency

Alveo Provides Massive Parallel Compute with Lowest Latency vs GPUs

Whole Application Acceleration

Xilinx – Matched Throughput

Other solutions – Mismatched Throughput

Al Accelerated Dark Matter Search (CERN)

Real-time ML Inference + Sensor pre-processing

CMS Expériment at the LHC, CERN
Data recorded; 2016-Oct-14 09:33:30.004032 GMT
Fun / Event / LS: 283171 / 95092595 / 195

100ns Inference Latency on 150 Terabytes/Second Data Rates

Introducing the Versal ACAP

Adaptive
Compute
Acceleration
Platform

Compute Acceleration

The Industry's First ACAP

Heterogeneous Acceleration

For Any Application

For Any Developer

Versal ACAP Technology Tour

Scalar Processing Engines

Adaptable Hardware Engines

Intelligent Engines
SW Programmable, HW Adaptable

Breakout Integration of Advanced Protocol Engines

Scalar Processing Engines

Arm Cortex-A72
Application Processor

Arm Cortex-R5
Real-Time Processor

Platform Management Controller

Adaptable Hardware Engines

Re-architected foundational HW fabric for greater compute density
Enables custom memory hierarchy
8X Faster Dynamic Reconfiguration ("on-the-fly")

Intelligent Engines

DSP Engines

High-precision floating point & low latency Granular control for customized datapaths

Al Engines

High throughput, low latency, and power efficient Ideal for AI inference and advanced signal processing

Al Engines

Optimized for AI Inference and Advanced Signal Processing Workloads

Network-on-Chip (NoC)

Ease of Use

Inherently software programmable Available at boot, no place-and-route required

High Bandwidth and Low Latency

Multi-terabit/sec throughput Guaranteed QoS

Power Efficiency

8X power efficiency vs. soft implementations Arbitration across heterogeneous engines

Xilinx University Program

- Donation program
- Training materials
- Request tutorials

cathal.mccabe@xilinx.com

www.Xilinx.com/university

Next generation compute efficiency with Xilinx FPGAs and the new Versal ACAP

- Try the new Vitis software for platform design free
- Test drive Alveo production ready accelerator cards
- Next generation Versal ACAP

Performance

Data rates

Power

Cost

Compute density

Machine Learning

Adaptability

Cloud scalability

Thank You

Xilinx Mission

Building the Adaptable,

Intelligent World